Microgel Electrophoresis of DNA from Individual Cells

Principles and Methodology
  • Narendra P. Singh


Rydberg and Johanson (1978) quantitated DNA damage using a novel approach that involved embedding cells in agarose, lysing them and denaturing their DNA with NaOH, then neutralizing the samples and staining the nucleoid thus formed with acridine orange. The ratio of red to green fluorescence from samples was used as a measure of DNA damage. Cells with less DNA damage showed higher ratios of green to red fluorescence and cells with more DNA damage showed lower ratios in photometric measurement. The technique is based on two assumptions:(1) a double-stranded DNA with more breaks denatures faster to single-stranded DNA in mild alkaline conditions and (2) acridine orange molecules in relatively high concentrations make a polymer along the length of single-stranded DNA. Polymer of the dye with single-stranded DNA yields a red fluorescence. Acridine molecules in low concentration intercalate in native double-stranded DNA and emit green fluorescence. In another important development, Ostling and Johanson (1984) exposed murine lymphoma cells to gamma rays and showed that lysed cells when electrophoresed in agarose on microscope slides in neutral conditions displayed a dose-dependent increase in DNA migration. These authors also used acridine orange, and claimed the sensitivity of their technique to detect DNA damage was as low as 50 rads.


Cover Glass Human Lymphocyte Acridine Orange Repair Time Representative Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barber, C. V., and Pentel, A. G. (1993). The role of oxygenation in embryotoxic mechanisms of three bioreducible agents. Teratology 47:209–223.PubMedCrossRefGoogle Scholar
  2. Boyum, A. (1968). Isolation of mononuclear cells and granulocytes from human blood. Scand. Clin. Lab. Invest. 21:77–89.CrossRefGoogle Scholar
  3. Collins, A. R., Ma, A. G., and Duthie S.J. (1995). The kinetics of repair of oxidative DNA damage (strand breaks and oxidized pyrimidines) in human cells. Mutat. Res. 336:69–77.PubMedCrossRefGoogle Scholar
  4. Comings, D. E. (1980). Arrangement of chromatin in the nucleus. Hum. Genet. 53:131–143.PubMedCrossRefGoogle Scholar
  5. Deutch, J. M. (1988). Theoretical studies of DNA during gel electrophoresis. Science 240:922–924.CrossRefGoogle Scholar
  6. Fairbairn, D. W., Olive, P. L., and O’Neill, K. L. (1995). The comet assay: A comprehensive review. Mutat. Res. 339:37–59.PubMedCrossRefGoogle Scholar
  7. Freeman, S. E., Blackett, A. D., Monteleone, D. C., Setlow, R. B., Sutherland, B. M., and Sutherland, J. C. (1986). Quantitation of radiation, chemical, or enzyme-induced single-strand breaks in nonradioactive DNA by alkaline gel electrophoresis: Application to pyrimidine dimers. Anal. Biochem. 158:119–129.PubMedCrossRefGoogle Scholar
  8. Gedik, G. M., Ewen, S. W. B., and Collins, A. R. (1992). Single-cell gel electrophoresis applied to the analysis of UV-C damage and its repair in human cells. J. Radiat. Biol. 62:313–320.CrossRefGoogle Scholar
  9. Glazer, A. N., and Rye, H. S. (1992). Stable dye-DNA interaction complexes as reagents for high-sensitivity fluorescence detection. Nature 359:859–861.PubMedCrossRefGoogle Scholar
  10. Hartmann, A., and Speit, G. (1995). Genotoxic effects of chemicals in the single cell gel (SCG) test with human blood cells in relation to the induction of sister-chromatid exchanges (SCE). Mutat. Res. 346:49–56.PubMedCrossRefGoogle Scholar
  11. Hellman, B., Vaghef, H., and Boström, B. (1995). The concepts of tail moment and tail inertia in the single cell gel electrophoresis assay. Mutat. Res 336:123–131.PubMedCrossRefGoogle Scholar
  12. Kavenoff, R., and Zimm, B. H. (1973). Chromosome size molecules from Drosophila. Chromosoma 41:1–27.PubMedCrossRefGoogle Scholar
  13. Khan, A., Lai, H., Nishimura, Y., Mirolo, M. H., and Singh, N. P. (1995). Effects of ECS on DNA-single strand breaks in rat brain cells. Convuls. Ther. 11:114–121.PubMedGoogle Scholar
  14. Kohn, K. W., Erickson, L. C, Ewig, R. A., and Friedman, C. A. (1976). Fractionation of DNA from mammalian cells by alkaline elution. Biochemistry 15:4629–4637.PubMedCrossRefGoogle Scholar
  15. Krauth, W., and Werner, D. (1979). Analysis of the most tightly bound proteins in eukaryotic DNA. Biochim. Biophys. Acta 564:390–401.PubMedCrossRefGoogle Scholar
  16. Lai, H., and Singh, N. P. (1995). Acute low intensity microwave exposure increases DNA single strand breaks in rat brain cells. Bioelectromagnetics 16:207–210.PubMedCrossRefGoogle Scholar
  17. Lett, J. T., Klucis, E. S., and Sun, C. (1970). On the size of the DNA in the mammalian chromosome. Biophys. J. 10:277–292.PubMedCrossRefGoogle Scholar
  18. Lipetz, P. D., Brash, D. E., Joseph, L. B., Jewett, H. D., Lisle, D. R., Lantry, L. E., Hart, R. W., and Stephens, R. E. (1982). Determination of DNA superhelicity and extremely low levels of DNA strand breaks in low numbers of nonradiolabeled cells by DNA-4′, 6-diamidino-2-phenylindole fluorescence in nucleoid gradients. Anal. Biochem. 121:339–348.PubMedCrossRefGoogle Scholar
  19. Olive, P. L., Banath, J. P., and Durand, R. E. (1990). Detection of etoposide resistance by measuring DNA damage in individual Chinese hamster cells. J. Natl. Cancer Inst. 82:779–783.PubMedCrossRefGoogle Scholar
  20. Ostling, O., and Johanson, K. J. (1984). Microelectrophoretic study of radiation-induced DNA damage in individual mammalian cells. Biochem. Biophys. Res. Commun. 123:291–298.PubMedCrossRefGoogle Scholar
  21. Rabl, C. (1885). Über Zelltheilung, Morphologisches Jahrbuch 10:214–330.Google Scholar
  22. Rydberg, B. (1980). Detection of induced DNA strand breaks with improved sensitivity in human cells. Radiat. Res. 81:492–495.PubMedCrossRefGoogle Scholar
  23. Rydberg, B., and Johanson, K. J. (1978). Estimation of DNA strand breaks in single mammalian cells, in:DNA Repair Mechanisms (P. C. Hanwalt and E. C. Friedberg, eds.), Academic Press, New York, pp. 465–468.Google Scholar
  24. Sasaki, M.S., and Norman, A. (1966). DNA fiber from human lymphocyte nuclei. Exp. Cell Res. 66:642–645.CrossRefGoogle Scholar
  25. Shafer, D. A., Xie, Y., and Falek, A. (1994). Detection of opiate-enhanced increases in DNA damage, HPRT mutants, and the mutation frequency in human HUT-78 cells. Environ. Mol. Mutagen. 23:37–44.PubMedCrossRefGoogle Scholar
  26. Singh, N. P. (1996a). Sodium ascorbate induces DNA single-strand breaks in human cells in vitro. Submitted for publication.Google Scholar
  27. Singh, N. P. (1996b). Investigation into basics of DNA microgel electrophoresis. Submitted for publication.Google Scholar
  28. Singh, N. P., and Khan, A. (1995). Acetaldehyde: Genotoxicity and cytotoxicity in human lymphocytes. Mutat. Res. 337:9–17.PubMedCrossRefGoogle Scholar
  29. Singh, N. P., and Stephens, R. E. (1986). A novel technique for viable cell determinations. Stain Technol. 61:315–318.PubMedGoogle Scholar
  30. Singh, N. P., McCoy, M. T., Tice, R. R., and Schneider, E. L. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175:184–191.PubMedCrossRefGoogle Scholar
  31. Singh, N. P., Danner, D. B., Tice, R. R., McCoy, M. C., Collins, G. D., and Schneider, E. L. (1989). Abundant alkali labile sites in DNA of human and mouse sperm. Exp. Cell Res. 184:461–470.PubMedCrossRefGoogle Scholar
  32. Singh, N. P., Danner, D. B., Tice, R. R., Brant, L., and Schneider, E. L. (1990). DNA damage and repair with age in individual human lymphocytes. Mutat. Res. 237:123–130.PubMedCrossRefGoogle Scholar
  33. Singh, N. P., Danner, D. B., Tice, R. R., Pearson, J. D., Brant, L., Morrel, C. H., and Schneider, E. L. (1991a). Basal DNA damage in individual human lymphocytes with age. Mutat. Res. 256:1–6.PubMedCrossRefGoogle Scholar
  34. Singh, N. P., Tice, R. R., Stephens, R. E., and Schneider, E. L. (1991b). A microgel electrophoresis technique for the direct quantitation of DNA damage and repair in individual fibroblasts cultured on microscopic slides. Mutat. Res. 252:289–296.PubMedCrossRefGoogle Scholar
  35. Singh, N. P., Stephens, R. E., and Schneider, E. L. (1994). Modifications of alkaline microgel electrophoresis for sensitive detection of DNA damage. Int. J. Radiat. Biol. 66:23–28.PubMedCrossRefGoogle Scholar
  36. Taylor, J. H., and Hozier, C. (1976). Evidence for a four micron replicon unit in CHO cells. Chromosoma 57:341–350.PubMedCrossRefGoogle Scholar
  37. Vijayalaxmi, Tice, R. R., and Strauss, G. H. S. (1992). Assessment of radiation-induced DNA damage in human blood lymphocytes using the single-cell gel electrophoresis technique. Mutat. Res. 271:243–252.PubMedCrossRefGoogle Scholar
  38. Werner, D., Krauth, W., and Hershey, H. V. (1980). Internucleotide protein linkers in Ehrlich ascites cell DNA. Biochim. Biophys. Acta 608:243–258.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Narendra P. Singh
    • 1
  1. 1.Bioelectromagnetic Research Laboratory, Center for BioengineeringUniversity of WashingtonSeattleUSA

Personalised recommendations