Skip to main content

Successive Projection Methods for the Solution of Overdetermined Nonlinear Systems

  • Chapter
Nonlinear Optimization and Applications

Abstract

We analyze a generalization of the classical Kaczmarz method for overdetermined nonlinear systems of equations with a convex constraint, where the feasible region is, in general, empty. We prove a local convergence theorem to fixed points of the algorithmic mapping. We defined a stopping rule for ill-conditioned problems, based on the behavior of the increment norm ∥x k+1x k∥. We show numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.N. Tikhonov and V.Y. Arsenin, “Solution of Ill-posed Problems”. John Wiley, New York 1977.

    Google Scholar 

  2. C.R. Vogel, “A constrained least squares regularization for nonlinear ill-posed problems”. SIAM Journal on Control and Optimization 28:34, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  3. G.H. Golub, M.T. Heath and G. Wahba, “Generalized cross-validation as a method for choosing a good ridge parameter”. Techno metrics 21:215, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Heinkenschloss, “Mesh independence for nonlinear least squares problems with norm constraints”. Technical Report 90-18, Department of Mathematical Sciences, Rice University.

    Google Scholar 

  5. J.M. Martinez and S.A. Santos, “A trust-region strategy for minimization on arbitrary domains”. Mathematical Programming 68:267, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  6. F. O’Sullivan and G. Wahba, “A cross-validated Bayesian retrieval algorithm for nonlinear remote sensing experiments”. Journal of Computational Physics 59:441, 1985.

    Article  MATH  Google Scholar 

  7. M.A. Diniz-Ehrhardt and J.M. Martinez, “A parallel projection method for overdetermined nonlinear systems of equations”. Numerical Algorithms 4:241, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Cimmino, “Calcolo approssimato per le soluzione dei sistemi di equazioni lineari”. La Ricerca Scientifica Ser II, Anno IV 1:326, 1938.

    Google Scholar 

  9. A.R. De Pierro and A.N. Iusem, “A parallel projection method for linear inequalities”. Linear Algebra and its Applications 64:243, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  10. M.A. Diniz-Ehrhardt, J.M. Martínez and S.A. Santos, “Parallel projection methods and the resolution of ill-posed problems”. Computers and Mathematics with Applications 27:11, 1994.

    Article  MATH  Google Scholar 

  11. R. J. Santos, “Iterative Linear Methods and Regularization”. Ph D Thesis, Department of Applied Mathematics, UNICAMP, Campinas, 1995.

    Google Scholar 

  12. G.T. Herman, “Image Reconstruction from Projections: The Fundamentals of Computerized Tomography.” Academic Press, New York 1980.

    MATH  Google Scholar 

  13. S. Kaczmarz, “Angenaerte Auflösung von Systemen linearer Gleichungen”. Bull Acad. Polon. Sci. Lett A35:355, 1937.

    Google Scholar 

  14. L.G. Gubin, B.T. Polyak and E.V. Raik, “The method of projections for finding the common point of convex sets” U.S.S.R. Comp. Math. Math. Phys. 7:1, 1967.

    Article  Google Scholar 

  15. S.F. McCormick, “An iterative procedure for the solution of constrained nonlinear equations with application to optimization problems”. Numerische Mathematik 23:371, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  16. S.F. McCormick, “The methods of Kaczmarz and row orthogonalization for solving linear equations an least squares problems in Hilbert spaces”. Indiana University Mathematical Journal 26:1137, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  17. K.H. Meyn, “Solution of underdetermined nonlinear equations by stationary iteration methods”. Numerische Mathematik 42:161, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  18. J.M. Martínez, “The method of successive orthogonal projections for solving nonlinear simultaneous equations”. Calcolo 23:93, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  19. J.M. Martínez, “Solution of nonlinear systems of equations by an optimal projection method”. Computing 37:59, 1986.

    Article  MATH  Google Scholar 

  20. J.M. Martínez, “Solving systems of nonlinear equations by means of an accelerated successive orthogonal projections method”. International Journal of Computational and Applied Mathematics 16:169, 1986.

    Article  MATH  Google Scholar 

  21. P.C. Hansen, “Analysis of discrete ill-posed problems by means of the L-curve”. SIAM Review 34:561, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  22. J.E. Dennis and R.B. Schnabel, “Numerical Methods for Unconstrained Optimization and Nonlinear Equations”. Prentice Hall, Englewood Cliffs, New Jersey 1983.

    MATH  Google Scholar 

  23. M. Mulato and I. Chambouleyron, “Small angle X-ray and neutron scattering of polydisperse systems: determination of the scattering particle size distribution”. To appear in Journal of Applied Crystallograpy.

    Google Scholar 

  24. Y. Censor, “Row-action methods for huge and sparse systems and their applications”. SLAM Review 23:444, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  25. Y. Censor, D.E. Gustafson, A. Lent and H. Tuy, “A new approach to the emission computerized tomography problem: simultaneous calculation of attenuation and activity coefficients”. IEEE Transactions on Nuclear Science NS-26:2775, 1979.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Diniz-Ehrhardt, M.A., Martinez, J.M. (1996). Successive Projection Methods for the Solution of Overdetermined Nonlinear Systems. In: Di Pillo, G., Giannessi, F. (eds) Nonlinear Optimization and Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0289-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0289-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0291-7

  • Online ISBN: 978-1-4899-0289-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics