Skip to main content

Homotopies Based on Nonsmooth Equations for Solving Nonlinear Variational Inequalities

  • Chapter
Nonlinear Optimization and Applications

Abstract

This paper describes a globally convergent path-following method for solving nonlinear equations containing particular kinds of nonsmooth functions called normal maps. These normal maps express nonlinear variational inequalities over polyhedral convex sets in a form convenient for analysis and computational solution. The algorithm is based on the well known predictor-corrector method for smooth functions, but it operates in the piecewise linear normal manifold induced by the convex set, and thus extends and implements earlier ideas of Alexander, Kellogg, Li, and Yorke. We discuss how the implementation works, and present some preliminary computational results.

The erratum of this chapter is available at http://dx.doi.org/10.1007/978-1-4899-0289-4_27

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.C. Alexander, “The topological theory of an embedding method”. In: “Continuation methods,” H. Wacker, ed., Academic Press, New York, pp. 37–68, 1978.

    Google Scholar 

  2. J. C. Alexander, R. B. Kellogg, T.-Y. Li, and J. A. Yorke, “Piecewise smooth continuation”. Manuscript, 1979.

    Google Scholar 

  3. J.C. Alexander, T.-Y. Li and J.A. Yorke, “Piecewise smooth homotopies”. In: “Homotopy methods and global convergence,” B. C. Eaves, F.J. Gould, H.-O. Peitgen, and M.J. Todd, eds., Plenum Press, New York, pp. 1–14, 1983.

    Chapter  Google Scholar 

  4. E.L. Allgower and K. Georg, “Numerical Continuation Methods: An Introduction”. Springer-Verlag, Berlin 1990.

    Book  MATH  Google Scholar 

  5. E.L. Allgower and K. Georg, “Continuation and path following”. Acta Numerica 2 (1993) 1–64.

    Article  MathSciNet  Google Scholar 

  6. E. L. Allgower and K. Georg, “Numerical path following”. In: “Handbook of Numerical Analysis,” P. G. Ciarlet and J. L. Lions, eds., North-Holland, Amsterdam (forthcoming).

    Google Scholar 

  7. S. C. Billups, “Algorithms for Complementarity Problems and Generalized Equations.” Dissertation, Department of Computer Sciences, University of Wisconsin—Madison, 1995.

    Google Scholar 

  8. M. Cao and M. C. Ferris, “A pivotal method for affine variational inequalities.” Technical Report No. 1114, Computer Sciences Department, University of Wisconsin—Madison, Madison, WI, October 1992; forthcoming in Mathematics of Operations Research.

    Google Scholar 

  9. C. Chen, “Smoothing Methods in Mathematical Programming.” Dissertation, Computer Sciences Department, University of Wisconsin—Madison, Madison, WI 1995.

    Google Scholar 

  10. A. R. Colville, “A comparative study on nonlinear programming codes”. IBM New York Scientific Center Report No. 320-2949, IBM Corporation, Philadelphia Scientific Center [sic], Philadelphia, PA 1968.

    Google Scholar 

  11. B.C. Eaves, “On the basic theorem of complementarity”. Mathematical Programming 1, pp. 68–75, 1971.

    Article  MathSciNet  MATH  Google Scholar 

  12. B. C. Eaves,” A short course in solving equations with PL homotopies”. in: “Nonlinear Programming, SIAM-AMS Proceedings Vol 9,” R. W. Cottle and C. E. Lemke, eds., American Mathematical Society, Providence, RI, pp. 73-143, 1976.

    Google Scholar 

  13. B. C. Eaves, “A locally quadratically convergent algorithm for computing stationary points”. Technical Report, Department of Operations Research, Stanford University, Stanford, CA 1978.

    Google Scholar 

  14. B.C. Eaves and H. Scarf, “The solution of systems of piecewise linear equations.” Mathematics of Operations Research 1, pp. 1–27, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  15. F. Facchinei and J. Soares, “Testing a new class of algorithms for nonlinear complementarity problems”. In: “Variational Inequalities and Network Equilibrium Problems,” F. Giannessi and A. Maugeri, eds., Plenum Press, New York and London, pp. 69–83, 1995.

    Google Scholar 

  16. J. Guddat, F. Guerra Vasquez and H.Th. Jongen, “Parametric Optimization: Singularities, Path-following and Jumps.” Teubner, Stuttgart; Wiley, Chichester 1990.

    Book  Google Scholar 

  17. T. Hansen and T.C. Koopmans, “On the definition and computation of a capital stock invariant under optimization”. Journal of Economic Theory 5, pp. 487–583, 1972.

    Article  MathSciNet  Google Scholar 

  18. P.T. Harker, “Accelerating the convergence of the diagonalization and projection algorithms for finite-dimensional variational inequalities”. Mathematical Programming 41, pp. 29–59, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  19. P.T. Harker and J.S. Pang, “Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications”. Mathematical Programming 48, pp. 161–220, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  20. N. H. Josephy, “Newton’s Method for Generalized Equations and the PIES Energy Model.” Dissertation, Department of Industrial Engineering, University of Wisconsin—Madison, Madison, WI 1979.

    Google Scholar 

  21. N. H. Josephy, “Newton’s method for generalized equations.” Technical Summary Report No. 1965, Mathematics Research Center, University of Wisconsin-Madison, Madison, WI 1979.

    Google Scholar 

  22. M. Kojima, “Strongly stable stationary solutions in nonlinear programs”. In: “Analysis and Computation of Fixed Points,” S. M. Robinson, ed., Academic Press, New York, pp. 93–138, 1980.

    Google Scholar 

  23. M. Kojima and R. Hirabayashi, “Continuous deformation of nonlinear programs”. In: “Sensitivity, Stability, and Parametric Analysis,” A. V. Fiacco, ed., Mathematical Programming Study 21, North-Holland, Amsterdam 1984.

    Google Scholar 

  24. T. De Luca, F. Facchinei, and C. Kanzow, “A semismooth equation approach to the solution of nonlinear complementarity problems”. Preprint, 1995.

    Google Scholar 

  25. J.G. MacKinnon, “A technique for the solution of spatial equilibrium models”. Journal of Regional Science 16, pp. 293–307, 1976.

    Article  Google Scholar 

  26. O.L. Mangasarian, “Equivalence of the complementarity problem to a system of nonlinear equations”. SIAM Journal on Applied Mathematics 31, pp. 89–92, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  27. N. Megiddo and M. Kojima, “On the existence and uniqueness of solutions in nonlinear complementarity theory”. Mathematical Programming 12, pp. 110–130, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  28. J. Outrata and J. Zowe, “A Newton method for a class of quasi-variational inequalities”. Computational Optimization and Applications 4, pp. 5–21, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  29. J.-S. Pang, “Solution differentiability and continuation of Newton’s method for variational inequality problems over polyhedral sets”. Journal of Optimization Theory and Applications 66, pp. 121–135, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  30. J.S. Pang, “Newton’s method for B-differentiable equations”. Mathematics of Operations Research 15, pp. 311–341, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  31. J.-S. Pang and Z. Wang, “Embedding methods for variational inequality and nonlinear complementarity problems”. Technical Report 5-26, Department of Mathematical Sciences, The Johns Hopkins University, Baltimore, MD 1991.

    Google Scholar 

  32. L. Qi and J. Sun, “A nonsmooth version of Newton’s method”. Mathematical Programming 58, pp. 353–367, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  33. S. M. Robinson, “An implicit-function theorem for generalized variational inequalities”. Technical Summary Report No. 1672, Mathematics Research Center, University of Wisconsin—Madison 1976.

    Google Scholar 

  34. S.M. Robinson, “Generalized equations”. In: “Mathematical Programming: The State of the Art, Bonn 1982,” A. Bachern, M. Grötschel, and B. Korte, eds., Springer-Verlag, Berlin 1983.

    Google Scholar 

  35. S.M. Robinson, “Normal maps induced by linear transformations”. Mathematics of Operations Research 17, pp. 691–714, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  36. S.M. Robinson, “Newton’s method for a class of nonsmooth functions”. Set-Valued Analysis 2, pp. 291–306, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  37. R.T. Rockafellar, “Convex Analysis”. Princeton University Press, Princeton, NJ 1970.

    MATH  Google Scholar 

  38. H. Sellami, “A Continuation Method for Normal Maps.” Dissertation, Departments of Mathematics and Industrial Engineering, University of Wisconsin—Madison, Madison, WI 1994.

    Google Scholar 

  39. H. Sellami, “A homotopy continuation method for solving generalized equations.” Preprint, 1995.

    Google Scholar 

  40. H. Sellami and S. M. Robinson, “A continuation method for normal maps”. Technical Report 93-8, Department of Industrial Engineering, University of Wisconsin—Madison, 1993.

    Google Scholar 

  41. H. Sellami and S. M. Robinson, “Implementation of a continuation method for normal maps.” Preprint, 1995.

    Google Scholar 

  42. M. Solodov, “Nonmonotone and Perturbed Optimization”. Dissertation, Computer Sciences Department, University of Wisconsin—Madison, Madison, WI 1995.

    Google Scholar 

  43. G. Stampacchia, “Formes bilinéaires coercitives sur les ensembles convexes”. Comptes Rendus de l’Académie des Sciences de Paris 258, pp. 4413–4416, 1964.

    MathSciNet  MATH  Google Scholar 

  44. G. Stampacchia, “Variational inequalities”. In: “Theory and Applications of Monotone Operators” (Proceedings of a NATO Advanced Study Institute held in Venice, Italy June 17–30, 1968), Edizioni “Oderisi,” Gubbio, Italy 1969.

    Google Scholar 

  45. M.J. Todd, “A note on computing equilibria in economies with activity analysis models of production”. Journal of Mathematical Economics 6, pp. 135–144, 1976.

    Article  MathSciNet  Google Scholar 

  46. Z. Wang, “Continuation Methods for Solving the Variational Inequality and Nonlinear Complementarity Problems.” Dissertation, Department of Mathematical Sciences, The Johns Hopkins University, Baltimore, MD 1990.

    Google Scholar 

  47. L. T. Watson, “Globally convergent homotopy methods.” A tutorial, Technical Report 86-22, Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 1986.

    Google Scholar 

  48. R. B. Wilson, “A Simplicial Method for Concave Programming”. Dissertation, Graduate School of Business Administration, Harvard University, Boston, MA 1963.

    Google Scholar 

  49. R. B. Wilson, “Subroutine SOLVER description”. Mimeographed manuscript 1964.

    Google Scholar 

  50. B. Xiao and P.T. Harker, “A nonsmooth Newton method for variational inequalities, I: Theory”. Mathematical Programming 65, pp. 151–194, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  51. B. Xiao and P.T. Harker, “A nonsmooth Newton method for variational inequalities, II: Numerical results”. Mathematical Programming 65, pp. 195–216, 1994.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hichem, S., Robinson, S.M. (1996). Homotopies Based on Nonsmooth Equations for Solving Nonlinear Variational Inequalities. In: Di Pillo, G., Giannessi, F. (eds) Nonlinear Optimization and Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0289-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0289-4_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0291-7

  • Online ISBN: 978-1-4899-0289-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics