Commonalities and Contrasts in the Organization of the Maize and Sorghum Nuclear Genomes

  • Jeffrey L. Bennetzen
  • Chang-Nong Liu
  • Phillip SanMiguel
  • Patricia S. Springer
  • Young-Kwan Jin
  • Carolyn A. Zanta
  • Zoya Avramova
Part of the Stadler Genetics Symposia Series book series (SGSS)


Analysis of plant genome organization has long been the realm of plant geneticists and cytogeneticists. The multipartite (several chromosome) nature of the nuclear genome, heritable and line-specific variations in the cytology or number of chromosomes (Blakeslee, 1922; Randolph and McClintock, 1926; Stadler, 1928; Kostoff, 1929; Philip and Huskins, 1931; McClintock, 1932; Creighton, 1934; Sears, 1939; Swanson, 1940), the linear order of genes whose linkage could be determined by analysis of crossover exchanges in meiosis, the physical exchange of chromosomal segments associated with recombination (Creighton and McClintock, 1931), the properties of telomeres (McClintock, 1941), the behavior of primary and secondary constrictions as centromeres in mitosis and meiosis (Prakken and Muntzing, 1942; Rhoades and Vilkomerson, 1942), the contribution of a particular chromosomal segment (the nucleolar organizer, NOR) to formation of the nucleolus (McClintock, 1934), the existence and preferential transmission of supernumerary (B) chromosomes (Longley, 1927; Darlington and Thomas, 1941; Roman, 1947), the biology of one class of highly repetitive DNA (the knob satellite) (Rhoades and Dempsey, 1966; Peacock et al., 1981), and the properties of a key class of middle repetitive DNAs (transposable elements) (McClintock, 1950) were all identified in plants concurrent with, or prior to, their discovery in other species. Much of this initial work was performed with maize, partly due to the early and excellent characterization of its karyotypic properties (Longley, 1924).


Bacterial Artificial Chromosome Sorghum Genome Grass Genome Sorghum Chromosome Comparative Genome Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abad, P.C., Vaury, C., Pelisson, A., Chaboissier, M.-C., Busseau, I., and Bucheton, A., 1989, A LINE element, the I factor of Drosophila teissieri, is able to transpose in other Drosophila species, Proc. Natl. Acad. Sci. USA 86: 8887.PubMedCrossRefGoogle Scholar
  2. Ahn, S., Anderson, J.A., Sorrells, M.E., and Tanksley, S.D., 1993, Homoeologous relationships of rice, wheat and maize chromosomes, Mol. Gen. Genet 241: 483.PubMedCrossRefGoogle Scholar
  3. Antequera, F., and Bird, A., 1988, Unmethylated CpG islands associated with the genes in higher plant DNA, EMBO J. 7: 2295.PubMedGoogle Scholar
  4. Arumuganathan, K., and Earle, ED., 1991, Nuclear DNA content of some important plant species, Plant Mol. Biol. Rep 9: 208.CrossRefGoogle Scholar
  5. Avramova, Z., SanMiguel, P., Georgieva, E, and Bennetzen, J.L, 1995, Matrix attachment regions and transcribed sequences within a long chromosomal continuum containing maize Adhl, Plant Cell,in press.Google Scholar
  6. Bennetzen, J.L, 1995a, The use of comparative genome mapping in the identification, cloning and manipulation of important plant genes, in:“The Impact of Plant Molecular Genetics,” B.W.S. Sobral, ed., Birkhauser, Boston, in press.Google Scholar
  7. Bennetzen, J.L, 1995b, The contributions of retroelements to plant genome structure, function, and evolution, Trends Micro,in press.Google Scholar
  8. Bennetzen, J.L, and Freeling, M., 1993, Grasses as a single genetic system: genome composition, collinearity and compatibility, Trends Genet. 9: 259.PubMedCrossRefGoogle Scholar
  9. Bennetzen, J.L, Schrick, K., Springer, P.S., Brown, W.E., and SanMiguel, P., 1994, Active maize genes are unmodified and flanked by diverse classes of modified, highly repetitive DNA, Genome 37: 565.PubMedCrossRefGoogle Scholar
  10. Bennetzen, J.L., and Springer, P.S., 1994, The generation of Mutator transposable element subfamilies in maize, Theor. Appt. Genet 87: 657.Google Scholar
  11. Binelli. G., Gianfranceschi, L, Pe, M.E., Taramino, G., Busso, C., Stenhouse, J., and Ottaviano, E, 1992, Similarity of maize and sorghum genomes as revealed by maize RFLP probes, Theor. Appl. Genet 84: 10.CrossRefGoogle Scholar
  12. Blakeslee, A.F., 1922, Variation in Datura due to changes in chromosome number, Amer. Nat 66: 16.CrossRefGoogle Scholar
  13. Bureau, T.E, and Wessler, S.R, 1994a, Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses, Proc. Natl. Acad. Sci. USA 91: 1411.PubMedCrossRefGoogle Scholar
  14. Bureau, T.E, and Wessler, S.R., 1994b, Stowaway. A new family of inverted repeat elements associated with the genes of monocotyledenous and dicotyledenous plants, Plant Cell 6: 907.PubMedGoogle Scholar
  15. Chittenden, LM., Schertz, K.F., Lin, Y.-R., Wing, R.A., and Paterson, A.H., 1994, A detailed RFLP map of Sorghum bicolor X S. propinquum, suitable for high-density mapping, suggests ancestral duplication of Sorghum chromosomes or chromosomal segments, Theor. Appl. Genet, 87: 925.CrossRefGoogle Scholar
  16. Civardi, L, Xia, Y., Edwards, K.J., Schnable, P.S., and Nikolau, B.J., 1994, The relationship between genetic and physical distances in the clones al-sh2 interval of the Zea mays L genome, Proc. Natl. Acad. Sci. USA 91: 8268.PubMedCrossRefGoogle Scholar
  17. Creighton, H.B., 1934, Three cases of deficiency in chromosome 9 in Zea mays, Proc. Natl. Acad. Sci. USA 20: 111.PubMedCrossRefGoogle Scholar
  18. Creighton, H.B., and McClintock, B., 1931, A correlation of cytological and genetical crossing-over in Zea mays, Proc. Nad. Acad. Sci. USA 17: 492.CrossRefGoogle Scholar
  19. Darlington, C.D., and Thomas, P.T., 1941, Morbid mitosis and the activity of inert chromosomes in Sorghum, Proc. Roy. Soc, London, B, 130: 127.CrossRefGoogle Scholar
  20. Doebley, J., Durbin, M., Golenberg, EM., Clegg, M.T., and Ma, D.P., 1990, Evolutionary analysis of the large subunit of carboxylase (rbcL) nucleotide sequence among the grasses (Gramineae), Evolution 44: 1097.CrossRefGoogle Scholar
  21. Doggett, H., 1988, “Sorghum,” John Wiley and Sons, New York.Google Scholar
  22. Flavell, RB., 1994, Inactivation of gene expression in plants as a consequence of specific sequence duplication, Proc. Natl. Acad. Sci. USA 91: 3490.PubMedCrossRefGoogle Scholar
  23. Flavell, RB., Bennett, M.D., Smith, J.B., and Smith, D.B. 1974, Genome size and proportion of repeated nucleotide sequence DNA in plants, Biochem. Genet 12: 257.PubMedCrossRefGoogle Scholar
  24. Hake, S, and Walbot, V., 1980, The genome of Zea mays, its organization and homology to related grasses, Chromosoma 79: 251.CrossRefGoogle Scholar
  25. Helentjaris, T., Weber, D.L, and Wright, S., 1988, Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphisms, Genetics 118: 353.PubMedGoogle Scholar
  26. Henikoff, S., 1990, Position effect variegation after 60 years, Trends Genet. 6: 422.PubMedCrossRefGoogle Scholar
  27. Hulbert, S.H., Richter, T.E, Axtell, J.D., and Bennetzen, J.L, 1990, Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes, Proc. Natl. Acad. Sci. USA 87: 4251.PubMedCrossRefGoogle Scholar
  28. Jin, Y.-K., and Bennetzen, J.L, 1994, Integration and nonrandom mutation of a plasma membrane proton ATPase gene fragment within the Bsl retroelement of maize, Plant Cell 6: 1177.PubMedGoogle Scholar
  29. Jorgensen, RA., 1995, Cosuppression, flower color patterns, and metastable gene expression states, Science 268: 686.PubMedCrossRefGoogle Scholar
  30. Kellum, R. and Shedl, P., 1991, A position-effect assay for boundaries of higher order chromosomal domains, Cell 64: 941.PubMedCrossRefGoogle Scholar
  31. Kidwell, M.G., 1992, Horizontal transfer of P elements and other short inverted repeat transposons, Genetica 86: 275.PubMedCrossRefGoogle Scholar
  32. Kim, A., Terzian, C., Santamaria, P., Pelisson, A., Prud’homme, N., and Bucheton, A., 1994, Retroviruses in invertebrates: the gypsy retrotransposon is apparently an infectious retrovirus of Drosophila melanogaster, Proc. Nad. Acad. Sci. USA 91: 1285.CrossRefGoogle Scholar
  33. Kostoff, D., 1929, An androgenic Nicotiana haploid, Zeitschr. Zellforsch 9: 640.CrossRefGoogle Scholar
  34. Laurie, D.A., and Bennett, M.D., 1985, Nuclear DNA content in the genera Zea and Sorghum. Intergeneric, interspecific and intraspecific variation, Heredity 55: 307.CrossRefGoogle Scholar
  35. Longley, A.E, 1924, Chromosomes in maize and maize relatives, J. Agr. Res 28: 673.Google Scholar
  36. Longley, A.E, 1927, Supernumerary chromosomes in Zea mays, J. Agr. Res 35: 769.Google Scholar
  37. MacRae, A.F., and Clegg, M.T., 1992, Evolution of Ac and Ds1 elements in select grasses (Poaceae), Genetica 86: 55.PubMedCrossRefGoogle Scholar
  38. McClintock, B., 1932, A correlation of ring-shaped chromosomes with variegation in Zea mays, Proc. Nad. Acad. Sci. USA 18: 677.CrossRefGoogle Scholar
  39. McClintock, B., 1934, The relation of a particular chromosomal element to the development of the nucleoli in Zea mays, Zeitschrift fur Zellforschung und mikroskopische Anatomie 21: 294.Google Scholar
  40. McClintock, B., 1941, The stability of broken ends of chromosomes in maize, Genetics 26: 234.PubMedGoogle Scholar
  41. McClintock, B., 1950, The origin and behavior of mutable loci in maize. Proc. Nad. Acad. Sci. USA 36: 344.CrossRefGoogle Scholar
  42. Melake-Berhan, A., Hulbert, S.H., Butler, LG., and Bennetzen, J.L, 1993, Structure and evolution of the genomes of Sorghum bicolor and Zea mays, Theor. Appl. Genet 86: 598.CrossRefGoogle Scholar
  43. Michaelson, M.J., Price, H.J., Ellison, J.R., and Johnston, J.S., 1991, Comparison of plant DNA contents determined by feulgen microspectrophotometry and laser flow cytometry, Am. J. Bot 78: 183.CrossRefGoogle Scholar
  44. Moore, G., Abbo, S., Cheung, W., Foote, T., Gale, M., Koebner, R, Leitch, A., Leitch, I., Money, T., Stanscombe, P., Yano, M., and Flavell, R., 1993, Key features of cereal genome organisation as revealed by the use of cytosine methylation-sensitive restriction endonucleases, Genomics 15: 472.PubMedCrossRefGoogle Scholar
  45. Peacock, W.J., Dennis, E.S., Rhoades, M.M., and Pryor, A.J., 1981, Highly repeated DNA sequence limited to knob heterochromatin in maize, Proc. Natl. Acad. Sci. USA 78: 4490.PubMedCrossRefGoogle Scholar
  46. Pereira, M.G., Lee, M., Bramel-Cox, P., Woodman, W., Doebley, J., Whitkus, R, 1994, Construction of an RFLP map in sorghum and comparative mapping in maize, Genome 37: 236.PubMedCrossRefGoogle Scholar
  47. Philip, J., and Huskins, C.L, 1931, The cytology of Mathiola incana R. Br., especially in relation to the inheritance of double flowers, J. Genet 24: 359.CrossRefGoogle Scholar
  48. Phillips, RL, Kleese, RA., and Wang, S.S., 1971, The nucleolus organizer region of maize (Zea mays L): chromosomal site of DNA complementary to ribosomal RNA, Chromosoma 36: 79.CrossRefGoogle Scholar
  49. Prakken, R., and Muntzing, A., 1942, A meiotic peculiarity in rye, simulating a terminal centromere, Hereditas 28: 441.CrossRefGoogle Scholar
  50. Purugganan, M.D., and Wessler, S.R., 1994, Molecular evolution of magellan, a maize Ty3/gypsy-like retrotransposon, Proc. Natl. Acad. Sci. USA 91: 1 1674.Google Scholar
  51. Ragab, R.A., Dronavalli, S., Saghai Maroof, M.A., and Yu, Y.G., 1994, Construction of a sorghum RFLP map using sorghum and maize DNA probes, Genome 37: 590.PubMedCrossRefGoogle Scholar
  52. Randolph, LF., and McClintock, B., 1926, Polyploidy in Zea mays L, Amer. Nat 60: 99.CrossRefGoogle Scholar
  53. Rhoades, M.M., and Dempsey, E, 1966, The effect of abnormal chromosome 10 on preferential segregation and crossing over in maize, Genetics 53: 989.PubMedGoogle Scholar
  54. Rhoades, M.M., and Vilkomerson, H., 1942, On the anaphase movement of chromosomes, Proc. Natl. Acad. Sci. USA, 28: 433.PubMedCrossRefGoogle Scholar
  55. Roman, H., 1947, Mitotic nondisjunction in the case of interchanges involving the B-type chromosome in maize, Genetics 32: 391.PubMedGoogle Scholar
  56. Sears, ER., 1939, Cytogenetic studies with polyploid species of wheat. I. Chromosomal aberrations in the progeny of a haploid of Triticum vulgare, Genetics, 24: 509.PubMedGoogle Scholar
  57. Springer, P.S., Edwards, K.J., and Bennetzen, J.L, 1994, DNA class organization on maize Adh1 yeast artificial chromosomes, Proc. Natl. Acad. Sci. USA 91: 863.PubMedCrossRefGoogle Scholar
  58. Springer, P.S., Zimmer, E.A., and Bennetzen, J.L, 1989, Genomic organization of the ribosomal DNA of sorghum and its close relatives, Theor. Appl. Genet 77: 844.CrossRefGoogle Scholar
  59. Stadler, LJ., 1928, Mutations in barley induced by X-rays and radium, Science 68: 186.PubMedCrossRefGoogle Scholar
  60. Swanson, C.P., 1940, The distribution of inversions in Tradescantia, Genetics 25: 438.PubMedGoogle Scholar
  61. Whitkus, R, Doebley, J., and Lee, M., 1992, Comparative genome mapping of sorghum and maize, Genetics 132: 1119.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Jeffrey L. Bennetzen
    • 1
  • Chang-Nong Liu
    • 1
  • Phillip SanMiguel
    • 1
  • Patricia S. Springer
    • 1
  • Young-Kwan Jin
    • 1
  • Carolyn A. Zanta
    • 1
  • Zoya Avramova
    • 1
  1. 1.Department of Biological SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations