Assessing Genetic Diversity in Plants with Synthetic Tandem Repetitive DNA Probes

  • Steven H. Rogstad
Part of the Stadler Genetics Symposia Series book series (SGSS)


The palette of molecular techniques available to population biologists is extensive (Avise, 1994), and is growing richer at a rapid pace. Although all of these techniques offer various perspectives in population biology investigations, no one of them is optimally applicable in all situations, and two different molecular techniques employed to examine the same question may produce different answers (e.g., allozymes versus DNA data; see Avise, 1994; Mitton, 1994). Such differences in informativeness among different molecular approaches most likely arise from the different evolutionary rates of, and forces upon, different portions of genomes. Discrepancies should not necessarily prompt the acceptance of one technique over another, but rather, potentially offer new insights into evolutionary processes. In fact, given that such discrepancies have commonly been found, it seems reasonable that investigations of population biology issues would profit from being examined from at least two independent, relevant approaches to seek compatible interpretations.


Core Sequence Variable Number Tandem Repeat Pistillate Parent Tropical Lowland Rain Forest Detectable Transmission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali, S., Muller, C.R., and Epplen, J.T., 1986, DNA fingerprinting by oligonucleotide probes specific for simple repeats. Human Genetics 74: 239.PubMedCrossRefGoogle Scholar
  2. Amos, B., and Pemberton, J., 1993, A bibliography of DNA fingerprinting studies, Fingerprint News 5: 2.Google Scholar
  3. Arens, P., Odinot, P., van Heusden, A.W., Lindhout, P., and Vosman, B., 1995, GATAand GACA-repeats are not evenly distributed throughout the tomato genome, Genome 38: 84.PubMedCrossRefGoogle Scholar
  4. Avise, J.C., 1994, “Molecular Markers, Natural History, and Evolution,” Chapman & Hall, N.Y.Google Scholar
  5. Batschelet, E, 1979, “Introduction to Mathematics for Life Sciences,” 3rd ed., Springer-Verlag, Berlin.Google Scholar
  6. Benson, G., and Waterman, M.S., 1994, A method for fast database search for all k-nucleotide repeats, Nuc. Acids Res. 22: 4828.CrossRefGoogle Scholar
  7. Borstnik, B., Pumpernik, D., Lukman, D., Ugarkovic, D., and Plohl, M., 1994, Tandemly repeated pentanucleotides in DNA sequences of eucaryotes, Nuc. Acids Res. 22: 3412.CrossRefGoogle Scholar
  8. Brown, C.M., Stockwell, P.A., Trotman, C.N.A., and Tate, W.P., 1990, Sequence analysis suggests that tetra-nucleotides signal the termination of protein synthesis in eukaryotes, Nuc. Acids Res. 18: 6339.CrossRefGoogle Scholar
  9. Dallas, J.F., 1988, Detection of DNA “fingerprints” of cultivated rice by hybridization with a human minisatellite DNA probe, Proc. Natl. Acad. Sci. USA, 85: 6831.PubMedCrossRefGoogle Scholar
  10. DePamphilis, C.W., 1988, “Hybridization in Woody Plants: Population Genetics and Reproductive Biology in Southeastern Buckeyes,” Ph.D. Diss., Univ. Georgia, Athens.Google Scholar
  11. Epplen, J.T., 1988, On simple repeated GATA-GACA sequences in animal genomes: a critical reappraisal, J. Heredity 79: 409.Google Scholar
  12. Feng, Y., Zhang, F., Lokey, LK., Chastain, J.L, Lakkis, L, Eberhart, D., and Warren, S.T., 1995, Translational suppression by trinucleotide repeat expansion at FMR1, Science 268: 731.PubMedCrossRefGoogle Scholar
  13. Good, P., 1994, “Permutation Tests,” Springer-Verlag, Berlin.Google Scholar
  14. Grant, V., 1981, “Plant Speciation,” 2nd ed., Columbia Univ. Press, N.Y.Google Scholar
  15. Hamrick, J.L, and Godt, M.J.W., 1990, Allozyme diversity in plant species, in: “Plant Population Genetics, Breeding, and Genetic Resources,” A.H.D. Brown, M.T. Clegg, A.L Kahler, and B.S. Weir, eds., Sinauer Associates Inc., Sunderland.Google Scholar
  16. Hamrick, J.L, Linhart, Y.B., and Mitton, J.B., 1979, Relationships between life history characteristics and electrophoretically detectable genetic variation in plants, Ann. Rev. Ecol. Syst. 10: 173.CrossRefGoogle Scholar
  17. Hamrick, J.L, and Murawski, D.A., 1991, Levels of allozyme diversity in populations of uncommon neotropical tree species, J. Trop. Ecol. 7: 395.CrossRefGoogle Scholar
  18. Jeffreys, A.J., Royle, N.J., Wilson, V., and Wong, Z., 1988, Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA, Nature 332: 278.PubMedCrossRefGoogle Scholar
  19. Jelinski, D.E, and Cheliak, W.M., 1992, Genetic diversity and spatial subdivision of Populus tremuloides (Salicaceae) in a heterogeneous landscape, Amer. J. Bot. 79: 728.CrossRefGoogle Scholar
  20. Jin, L, and Chakraborty, R., 1993, A bias-corrected estimate of heterozygosity for single-probe multilocus DNA fingerprints, Mol. Biol. Evol. 10: 11–12.Google Scholar
  21. Kaur, A., Ha, C.O., Jong, K., Sands, V.E., Chan, H.T., Soepadmo, E., and Ashton, P.S., 1978, Apomixis may be widespread among trees of the climax rain forest, Nature 271: 440.CrossRefGoogle Scholar
  22. Litt M., and Luty, J.A., 1989, A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene, Amer. J. Human Genetics 44: 397.Google Scholar
  23. Mitton, J.B., 1994, Molecular approaches to population biology, Ann. Rev. Ecol. Syst. 25: 45.CrossRefGoogle Scholar
  24. Nakamura, Y., Leppert, M., O’Connel, P., Wolff, R. Holm, T., Culver, M., Martin, C., Fujimoto, E, Hoff, M., Kumlin, E, and White, R., 1987, Variable number of tandem-repeat (VNTR) markers for human gene mapping, Science 235: 1616.Google Scholar
  25. Neuhaus, D., Kuhl, H., Kohl, J.G., Dorfel, P., and Borner, T., 1993, Investigation on the genetic diversity of Phragmites stands using genomic fingerprinting, Aquatic Bot. 45: 357.CrossRefGoogle Scholar
  26. Nogler, G.A., 1984, Gametophytic apomixis, in: “Embryology of Angiosperms,” B.M. Johri, ed., Springer-Verlag, Berlin.Google Scholar
  27. Nurnberg, P., Barth, I., Fuhrmann, E, Lenzner, C., Lozanova, T., Peters, C., Poche, H., and Thiel, G., 1991, Monitoring genomic alterations with a panel of nucleotide probes specific for various simple repeat motifs, Electrophoresis 12: 186.PubMedCrossRefGoogle Scholar
  28. Prodohl, P.A., Taggart, J.B., and Ferguson, A., 1994, Single locus inheritance and joint segregation analysis of minisatellite (VNTR) DNA loci in brown trout (Salmo trutta L), Heredity 73: 556.CrossRefGoogle Scholar
  29. Richards, A.J., 1986, “Plant Breeding Systems,” George Allen & Unwin, London. Ritland, K., 1990, A series of FORTRAN computer programs for estimating plant mating systems, J. Heredity 81: 235.Google Scholar
  30. Rogstad, S.H., 1992, Saturated NaCI-CTAB solution as a means of field preservation of leaves for DNA analyses, Taxon 41: 701.CrossRefGoogle Scholar
  31. Rogstad, S.H., 1993, Surveying plant genomes for variable number of tandem repeats loci, Meth. Enzymology 224: 278.Google Scholar
  32. Rogstad, S.H., 1994a, Inheritance in turnip of variable number tandem repeat genetic markers revealed with synthetic repetitive DNA probes, Theor. Appl. Genet. 89: 824.Google Scholar
  33. Rogstad, S.H., 1994b, The biosystematics and evolution of the Polyalthia hypoleuca species complex (Annonaceae) of Malesia. III. Floral ontogeny and breeding systems, Amer. J. Bot. 81: 145.CrossRefGoogle Scholar
  34. Rogstad, S.H., Nybom, H., and Schaal, B.A., 1991, The tetrapod “DNA fingerprinting” M13 repeat probe reveals genetic diversity and clonal growth in quaking aspen (Populus tremuloides), Plant Syst. Evol. 175: 115.CrossRefGoogle Scholar
  35. Rothuizen, J., Wolfswinkel, J., Lenstra, J.A., and Frants, R.R., 1994, The incidence of mini-and micro-satellite repetitive DNA in the canine genome, Theor. Appl. Genet. 89: 403.CrossRefGoogle Scholar
  36. Scribner, K.T., Arntzen, J.W., and Burke, T., 1994, Comparative analysis of intra-and interpopulation genetic diversity in $ufo bufo, using allozyme, single-locus microsatellite, minisatellite, and multilocus minisatellite data, Mol. Biol. Evol. 11: 737.PubMedGoogle Scholar
  37. Shaw, D.V., Kahler, A.L, and Allard, RW., 1981, A multilocus estimator of mating system parameters in plant populations, Proc. Natl. Acad. Sci. USA 78: 1298.PubMedCrossRefGoogle Scholar
  38. Stephens, J.C., Gilbert, D.A., Yuhki, N., and O’Brien, S.J., 1992, Estimation of heterozygosity for single-probe multilocus DNA fingerprints, Mol. Biol. Evol. 9: 729.PubMedGoogle Scholar
  39. Terauchi, R, and Konuma, A., 1994, Microsatellite polymorphism in Dioscorea tokoro, a wild yam species, Genome 37: 794.PubMedCrossRefGoogle Scholar
  40. Vergnaud, G., 1989, Polymers of random short oligonucleotides detect polymorphic loci in the human genome, Nuc. Acids Res. 17: 7623.CrossRefGoogle Scholar
  41. Weber, J.L, and May, P.E, 1989, abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction, Amer. J. Human Genet 44: 388.Google Scholar
  42. Weising, K., Nybom, H., Wolff, K., and Wieland, M., 1995, “DNA Fingerprinting in Plants and Fungi,” CRC Press, Boca Raton.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Steven H. Rogstad
    • 1
  1. 1.Department of Biological Sciences ML6University of CincinnatiCincinnatiUSA

Personalised recommendations