Skip to main content

Assessing Genetic Diversity in Plants with Synthetic Tandem Repetitive DNA Probes

  • Chapter

Part of the book series: Stadler Genetics Symposia Series ((SGSS))

Abstract

The palette of molecular techniques available to population biologists is extensive (Avise, 1994), and is growing richer at a rapid pace. Although all of these techniques offer various perspectives in population biology investigations, no one of them is optimally applicable in all situations, and two different molecular techniques employed to examine the same question may produce different answers (e.g., allozymes versus DNA data; see Avise, 1994; Mitton, 1994). Such differences in informativeness among different molecular approaches most likely arise from the different evolutionary rates of, and forces upon, different portions of genomes. Discrepancies should not necessarily prompt the acceptance of one technique over another, but rather, potentially offer new insights into evolutionary processes. In fact, given that such discrepancies have commonly been found, it seems reasonable that investigations of population biology issues would profit from being examined from at least two independent, relevant approaches to seek compatible interpretations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali, S., Muller, C.R., and Epplen, J.T., 1986, DNA fingerprinting by oligonucleotide probes specific for simple repeats. Human Genetics 74: 239.

    Article  PubMed  CAS  Google Scholar 

  • Amos, B., and Pemberton, J., 1993, A bibliography of DNA fingerprinting studies, Fingerprint News 5: 2.

    Google Scholar 

  • Arens, P., Odinot, P., van Heusden, A.W., Lindhout, P., and Vosman, B., 1995, GATAand GACA-repeats are not evenly distributed throughout the tomato genome, Genome 38: 84.

    Article  PubMed  CAS  Google Scholar 

  • Avise, J.C., 1994, “Molecular Markers, Natural History, and Evolution,” Chapman & Hall, N.Y.

    Google Scholar 

  • Batschelet, E, 1979, “Introduction to Mathematics for Life Sciences,” 3rd ed., Springer-Verlag, Berlin.

    Google Scholar 

  • Benson, G., and Waterman, M.S., 1994, A method for fast database search for all k-nucleotide repeats, Nuc. Acids Res. 22: 4828.

    Article  CAS  Google Scholar 

  • Borstnik, B., Pumpernik, D., Lukman, D., Ugarkovic, D., and Plohl, M., 1994, Tandemly repeated pentanucleotides in DNA sequences of eucaryotes, Nuc. Acids Res. 22: 3412.

    Article  CAS  Google Scholar 

  • Brown, C.M., Stockwell, P.A., Trotman, C.N.A., and Tate, W.P., 1990, Sequence analysis suggests that tetra-nucleotides signal the termination of protein synthesis in eukaryotes, Nuc. Acids Res. 18: 6339.

    Article  CAS  Google Scholar 

  • Dallas, J.F., 1988, Detection of DNA “fingerprints” of cultivated rice by hybridization with a human minisatellite DNA probe, Proc. Natl. Acad. Sci. USA, 85: 6831.

    Article  PubMed  CAS  Google Scholar 

  • DePamphilis, C.W., 1988, “Hybridization in Woody Plants: Population Genetics and Reproductive Biology in Southeastern Buckeyes,” Ph.D. Diss., Univ. Georgia, Athens.

    Google Scholar 

  • Epplen, J.T., 1988, On simple repeated GATA-GACA sequences in animal genomes: a critical reappraisal, J. Heredity 79: 409.

    CAS  Google Scholar 

  • Feng, Y., Zhang, F., Lokey, LK., Chastain, J.L, Lakkis, L, Eberhart, D., and Warren, S.T., 1995, Translational suppression by trinucleotide repeat expansion at FMR1, Science 268: 731.

    Article  PubMed  CAS  Google Scholar 

  • Good, P., 1994, “Permutation Tests,” Springer-Verlag, Berlin.

    Google Scholar 

  • Grant, V., 1981, “Plant Speciation,” 2nd ed., Columbia Univ. Press, N.Y.

    Google Scholar 

  • Hamrick, J.L, and Godt, M.J.W., 1990, Allozyme diversity in plant species, in: “Plant Population Genetics, Breeding, and Genetic Resources,” A.H.D. Brown, M.T. Clegg, A.L Kahler, and B.S. Weir, eds., Sinauer Associates Inc., Sunderland.

    Google Scholar 

  • Hamrick, J.L, Linhart, Y.B., and Mitton, J.B., 1979, Relationships between life history characteristics and electrophoretically detectable genetic variation in plants, Ann. Rev. Ecol. Syst. 10: 173.

    Article  Google Scholar 

  • Hamrick, J.L, and Murawski, D.A., 1991, Levels of allozyme diversity in populations of uncommon neotropical tree species, J. Trop. Ecol. 7: 395.

    Article  Google Scholar 

  • Jeffreys, A.J., Royle, N.J., Wilson, V., and Wong, Z., 1988, Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA, Nature 332: 278.

    Article  PubMed  CAS  Google Scholar 

  • Jelinski, D.E, and Cheliak, W.M., 1992, Genetic diversity and spatial subdivision of Populus tremuloides (Salicaceae) in a heterogeneous landscape, Amer. J. Bot. 79: 728.

    Article  Google Scholar 

  • Jin, L, and Chakraborty, R., 1993, A bias-corrected estimate of heterozygosity for single-probe multilocus DNA fingerprints, Mol. Biol. Evol. 10: 11–12.

    Google Scholar 

  • Kaur, A., Ha, C.O., Jong, K., Sands, V.E., Chan, H.T., Soepadmo, E., and Ashton, P.S., 1978, Apomixis may be widespread among trees of the climax rain forest, Nature 271: 440.

    Article  Google Scholar 

  • Litt M., and Luty, J.A., 1989, A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene, Amer. J. Human Genetics 44: 397.

    CAS  Google Scholar 

  • Mitton, J.B., 1994, Molecular approaches to population biology, Ann. Rev. Ecol. Syst. 25: 45.

    Article  Google Scholar 

  • Nakamura, Y., Leppert, M., O’Connel, P., Wolff, R. Holm, T., Culver, M., Martin, C., Fujimoto, E, Hoff, M., Kumlin, E, and White, R., 1987, Variable number of tandem-repeat (VNTR) markers for human gene mapping, Science 235: 1616.

    Google Scholar 

  • Neuhaus, D., Kuhl, H., Kohl, J.G., Dorfel, P., and Borner, T., 1993, Investigation on the genetic diversity of Phragmites stands using genomic fingerprinting, Aquatic Bot. 45: 357.

    Article  Google Scholar 

  • Nogler, G.A., 1984, Gametophytic apomixis, in: “Embryology of Angiosperms,” B.M. Johri, ed., Springer-Verlag, Berlin.

    Google Scholar 

  • Nurnberg, P., Barth, I., Fuhrmann, E, Lenzner, C., Lozanova, T., Peters, C., Poche, H., and Thiel, G., 1991, Monitoring genomic alterations with a panel of nucleotide probes specific for various simple repeat motifs, Electrophoresis 12: 186.

    Article  PubMed  CAS  Google Scholar 

  • Prodohl, P.A., Taggart, J.B., and Ferguson, A., 1994, Single locus inheritance and joint segregation analysis of minisatellite (VNTR) DNA loci in brown trout (Salmo trutta L), Heredity 73: 556.

    Article  Google Scholar 

  • Richards, A.J., 1986, “Plant Breeding Systems,” George Allen & Unwin, London. Ritland, K., 1990, A series of FORTRAN computer programs for estimating plant mating systems, J. Heredity 81: 235.

    Google Scholar 

  • Rogstad, S.H., 1992, Saturated NaCI-CTAB solution as a means of field preservation of leaves for DNA analyses, Taxon 41: 701.

    Article  Google Scholar 

  • Rogstad, S.H., 1993, Surveying plant genomes for variable number of tandem repeats loci, Meth. Enzymology 224: 278.

    CAS  Google Scholar 

  • Rogstad, S.H., 1994a, Inheritance in turnip of variable number tandem repeat genetic markers revealed with synthetic repetitive DNA probes, Theor. Appl. Genet. 89: 824.

    CAS  Google Scholar 

  • Rogstad, S.H., 1994b, The biosystematics and evolution of the Polyalthia hypoleuca species complex (Annonaceae) of Malesia. III. Floral ontogeny and breeding systems, Amer. J. Bot. 81: 145.

    Article  Google Scholar 

  • Rogstad, S.H., Nybom, H., and Schaal, B.A., 1991, The tetrapod “DNA fingerprinting” M13 repeat probe reveals genetic diversity and clonal growth in quaking aspen (Populus tremuloides), Plant Syst. Evol. 175: 115.

    Article  CAS  Google Scholar 

  • Rothuizen, J., Wolfswinkel, J., Lenstra, J.A., and Frants, R.R., 1994, The incidence of mini-and micro-satellite repetitive DNA in the canine genome, Theor. Appl. Genet. 89: 403.

    Article  CAS  Google Scholar 

  • Scribner, K.T., Arntzen, J.W., and Burke, T., 1994, Comparative analysis of intra-and interpopulation genetic diversity in $ufo bufo, using allozyme, single-locus microsatellite, minisatellite, and multilocus minisatellite data, Mol. Biol. Evol. 11: 737.

    PubMed  CAS  Google Scholar 

  • Shaw, D.V., Kahler, A.L, and Allard, RW., 1981, A multilocus estimator of mating system parameters in plant populations, Proc. Natl. Acad. Sci. USA 78: 1298.

    Article  PubMed  CAS  Google Scholar 

  • Stephens, J.C., Gilbert, D.A., Yuhki, N., and O’Brien, S.J., 1992, Estimation of heterozygosity for single-probe multilocus DNA fingerprints, Mol. Biol. Evol. 9: 729.

    PubMed  CAS  Google Scholar 

  • Terauchi, R, and Konuma, A., 1994, Microsatellite polymorphism in Dioscorea tokoro, a wild yam species, Genome 37: 794.

    Article  PubMed  CAS  Google Scholar 

  • Vergnaud, G., 1989, Polymers of random short oligonucleotides detect polymorphic loci in the human genome, Nuc. Acids Res. 17: 7623.

    Article  CAS  Google Scholar 

  • Weber, J.L, and May, P.E, 1989, abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction, Amer. J. Human Genet 44: 388.

    Google Scholar 

  • Weising, K., Nybom, H., Wolff, K., and Wieland, M., 1995, “DNA Fingerprinting in Plants and Fungi,” CRC Press, Boca Raton.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rogstad, S.H. (1996). Assessing Genetic Diversity in Plants with Synthetic Tandem Repetitive DNA Probes. In: Gustafson, J.P., Flavell, R.B. (eds) Genomes of Plants and Animals. Stadler Genetics Symposia Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0280-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0280-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0282-5

  • Online ISBN: 978-1-4899-0280-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics