Skip to main content

Constitutive Freezing Tolerant Mutants in Arabidopsis

A Genetic Approach to Signaling Transduction in Cold Acclimation

  • Chapter

Abstract

Little is known about the signaling cascades by which plants perceive low temperatures and use the information to trigger molecular and biochemical programs leading to increased freezing tolerance. We have developed a Petri dish freezing assay that allows rapid screening of large numbers of M2 plants for mutants which are constitutively freezing tolerant. In this assay, non-acclimated wild-type Arabidopsis thaliana, Columbia exhibited a killing temperature (LT50) of −5.3°C. Two days of acclimation at 4°C brought about a change in LT50 to −12°C. Over 20 independent mutant lines that are freezing tolerant without cold acclimation were obtained by screening approximately 800,000 EMS-mutagenized M2 plants at −8°C. One mutant line, which has a recessive mutation at a locus designated eskimol (esk1), has LT50 of-11.5°C in the absence of acclimation. The esk1 mutant is smaller than WT but in most other aspects the growth and development of these plants are similar to WT. One hypothesis to explain the recessiveness and pleiot-ropic effects of esk1 is that the wild-type ESK1 gene may encode a negative regulator which represses the genetic programs required to withstand freezing at normal growth conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker SS, Wilhelm KS, Thomashow MF (1994) The 5’-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought-, and ABA-regulated gene expression. Plant Mol Biol 24: 701–713

    Article  PubMed  CAS  Google Scholar 

  • Bleecker AB, Schaller (1996) The mechanism of ethylene perception. Plant Physiol 111: 653–660

    PubMed  CAS  Google Scholar 

  • Bowler C, Chua NH (1994) Emerging themes of plant signal transduction. Plant Cell 6: 1529–1541

    PubMed  CAS  Google Scholar 

  • Browse J, McCourt PJ, Sommerville CR (1986) Fatty acid composition of leaf lipids determined after combined digestion and fatty acid methylester formation from fresh tissue. Anal. Biochem 152: 141–145

    Article  PubMed  CAS  Google Scholar 

  • Chamovitz DA, Deng XW (1995) The novel components of the Arabidopsis light signaling pathway may define a group of general developmental regulators shared by both animal and plant kingdoms. Cell 82: 353–354

    Article  PubMed  CAS  Google Scholar 

  • Chen HH, Li PH, Brenner ML (1983) Involvement of abscisic acid in potato cold acclimation. Plant Physiol 71: 362–365

    Article  PubMed  CAS  Google Scholar 

  • Deng XW, Matsui M, Wei N, Wagner D, Chu AM, Feldman KA, Quail PH (1992) COP 1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and Gb homologous domain. Cell 71: 791–801

    Article  PubMed  CAS  Google Scholar 

  • Dhindsa RS, Monroy AF, Sangwan V, Kawczynski W, Labbe E (1996) Low temperature signal transduction during cold acclimation. In: This proceeding

    Google Scholar 

  • Dunn MA, Morris A, Jack PL, Hughes MA (1993) A low-temperature-responsive translation elongation factor-la from barley (Hordeum vulgare L.). Plant Mol Biol 23: 221–225

    Article  PubMed  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50: 151–158

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Hajela RK, Thomashow MF (1988) Cold acclimation in Arabidopsis thaliana. Plant Physiol 87: 745–750

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Artus NN, Thomashow MF 1992) cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana. Plant Mol Biol 18: 13–21

    Article  PubMed  CAS  Google Scholar 

  • Guy CL (1990) Cold acclimation and freezing stress tolerance: Role of protein metabolism. Ann Rev Plant Physiol Mol Biol 41: 187–223

    Article  CAS  Google Scholar 

  • Hon WC, Griffith M, Chong P, Yang DC (1994) Extraction and isolation of antifreeze proteins from winter rye (Secale cereale L.) leaves. Plant Physiol 104: 971–980

    PubMed  CAS  Google Scholar 

  • Hughes MA, Pearce RS (1988) Low temperature treatment of barley plants causes altered gene expression in shoot meristems. J Exp Bot 39: 1461–1467

    Article  Google Scholar 

  • Jarillo JA, Leyva A, Salinas J, Martinez-Zapater JM (1989) Low temperature induces the accumulation of alcohol dehydrogenase mRNA in Arabidopsis thaliana, a chilling-tolerant plant. Plant Physiol 101: 833–837

    Google Scholar 

  • Koster KL, Lynch DV (1992) Solute accumulation and compartmentation during the cold acclimation of puma rye. Plant Physiol 98: 108–113

    Article  PubMed  CAS  Google Scholar 

  • Kurkela S, Franck M (1990) Cloning and characterization of a cold-and ABA-inducible Arabidopsis gene. Plant Mol Biol 15: 137–144

    Article  PubMed  CAS  Google Scholar 

  • Kwok SF, Piekos B, Misera S, Deng XW (1996) A complement of ten essential and pleitropic Arabidopsis COP/DET/FUS genes is necessary for repression of photomorphogenesis in darkness. Plant Physiol 110: 731–742

    Article  PubMed  CAS  Google Scholar 

  • Levitt J (1980) Responses of Plants to Environmental Stresses, Vol 1. Academic Press, Orlando, FL

    Google Scholar 

  • Leyva A, Antonio J, Salinas J, Martinez-Zapater JM (1995) Low temperature induces the accumulation of phenylalanine ammonia-lyase and chalcone synthase mRNAs of Arabidopsis thaliana in a light-dependent manner. Plant Physiol 108: 39–46

    PubMed  CAS  Google Scholar 

  • Lin C, Thomashow MF (1992) A cold-regulated Arabidopsis gene encodes a polypeptide having potent cryopro-tective activity. Biochem and Biophys Res Commun 183: 1103–1108

    Article  CAS  Google Scholar 

  • McNellis TW, Deng XW (1995) Light control of seedling morphogenetic pattern. Plant Cell 7: 1749–1761

    PubMed  CAS  Google Scholar 

  • McNellis TW, von Arnim AG, Deng XW (1994) Overexpression of Arabidopsis COP1 results in partial suppression of light mediated development: Evidence for a light-inactivable repressor of photomorphogenesis. Plant Cell 6: 1391–1400

    PubMed  CAS  Google Scholar 

  • Miquel M, James D, Dooner H, Browse J (1993) Arabidopsis requires polyunsaturated lipids for low temperature survival. Proc Natl Acad Sci 90: 6208–6212

    Article  PubMed  CAS  Google Scholar 

  • Monroy AF, Dhindsa RS (1995) Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25°C. Plant Cell 7: 321–331

    PubMed  CAS  Google Scholar 

  • Perras M, Sarham F (1984) Energy state of spring and winter wheat during cold hardening. Soluble sugars and adenine nucleotides. Physiol Plant 60: 129–132

    Article  CAS  Google Scholar 

  • Prasad TK, Anderson MD, Martin BA, Stewart CR (1994) Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6: 65–74

    PubMed  CAS  Google Scholar 

  • Ristic Z, Ashworth EN (1993) Changes in leaf ultrastructure and carbohydrates in Arabidopsis thaliana L. (Heyn) cv. Columbia during rapid cold acclimation. Protoplasma 172: 111–123

    Article  Google Scholar 

  • Sakai A, Larcher W (1987) Frost Survival of Plants: Responses and Adaptations to Freezing Stress. Springer-Verlag, New York

    Book  Google Scholar 

  • Shaffer MA, Fischer RL (1988) Analysis of mRNAs that accumulate in response to low temperature identifies a thiol protease gene in tomato. Plant Physiol 87: 431–436

    Article  Google Scholar 

  • Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG, Jones JDG (1995) Molecular genetics of plant disease resistance. Science 268: 661–667

    Article  PubMed  CAS  Google Scholar 

  • Steponkus PL, Uemura M, Balsamo RA, Arvinte T, Lynch DV (1988) Transformation of the cryobehavior of rye protoplasts by modification of the plasma membrane lipid composition. Proc Natl Acad Sci USA 85: 9026–9030

    Article  PubMed  CAS  Google Scholar 

  • Steponkus PL, Uemura M, Joseph RA, Gilmour SJ, Thomashow MF (1996) Constitutive expression of the COR15a gene alters the freezing tolerance of leaves and isolated protoplasts of Arabidopsis thaliana. In: This Proceeding.

    Google Scholar 

  • Swain SM, Olszewski NE (1996) Genetic analysis of gibberellin signal tranduction. Plant Physiol 112: 11–17

    PubMed  CAS  Google Scholar 

  • Thomashow MF (1994) Arabidopsis thaliana as a model for studying mechanisms of plant cold tolerance. In: EM Meyerowitz and CS Somerville, eds. Arabidopsis. Cold Spring Harbor Laboratory Press, pp807-834

    Google Scholar 

  • Thomashow MF, Stockinger E, Gilmour SJ, Bloksberg L (1996) Regulation of COR gene expression in response to low temperature and drought. In: This Proceeding

    Google Scholar 

  • von Arnim AG, Deng XW (1994) Light inactivation of Arabidopsis photomorphogenic COP1 involves a cell specific regulation of its nucleo-cytoplasmic partitioning. Cell 79: 1035–1045

    Article  Google Scholar 

  • Warren G, McKown R, Marin A, Teutonico R (1996) Isolation of mutations affecting the development of freezing tolerance in Arabidopsis thaliana (L.) Heynh. Plant Physiol 111: 1011–1019

    Article  PubMed  CAS  Google Scholar 

  • Warren G, McKown R, Marin A, Teutonico R (1996) Arabidopsis mutants impaired in freezing tolerance after cold acclimation. In: This Proceeding

    Google Scholar 

  • Wilhelm KS, Thomashow MF (1993) Arabidopsis thaliana cor15b, an apparent homologue of cor15a is strongly responsive to cold and ABA, but not drought. Plant Mol Biol 23: 1073–1077

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1993) Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis and analysis of its promoter in transgenic plants. Mol Gen Genet 236: 331–340

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6: 251–264

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Xin, Z., Browse, J.A. (1997). Constitutive Freezing Tolerant Mutants in Arabidopsis . In: Li, P.H., Chen, T.H.H. (eds) Plant Cold Hardiness. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0277-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0277-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0279-5

  • Online ISBN: 978-1-4899-0277-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics