Skip to main content

Investigating the Role of Lipid Metabolism in Chilling and Freezing Tolerance

  • Chapter
Plant Cold Hardiness

Abstract

Within the broader context of how lipid composition affects the cell biology and physiology of plants, the question of how membrane unsaturation affects a plant’s ability to tolerate low-temperature stresses has a long and distinguished history. A series of Arabidopsis mutants with defects in lipid metabolism has provided important examples of how membrane fatty acid composition can affect plant temperature responses, although it is not complete clear how these specialized examples relate to chilling and freezing tolerance in horticulture. In this review, we will first provide a general introduction to the lipid mutants and then consider in detail some of the studies that have demonstrated the requirements of polyunsaturated membranes for proper growth and function of plants at chilling temperatures. A specific screen for mutants that are damaged by chilling has also been undertaken and the results and prospects for this approach are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arondel V, Lemieux B, Hwang I, Gibson S, Goodman HM, Somerville CR (1992) Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis. Science 258: 1353–1355

    Article  PubMed  CAS  Google Scholar 

  • Botstein D, Maurer R (1982) Genetic approaches to the analysis of microbial development. Ann Rev Genet 16: 61–83

    Article  PubMed  CAS  Google Scholar 

  • Browse J, Kunst L, Anderson S, Hugly S, Somerville CR (1989) A mutant of Arabidopsis deficient in the chlo-roplast 16:1/18:1 desaturase. Plant Physiol 90: 522–529

    Article  PubMed  CAS  Google Scholar 

  • Browse J, Somerville C (1991) Glycerolipid synthesis: Biochemistry and regulation. Ann Rev Plant Physiol. Plant Mol Biol 42: 467–506

    Article  CAS  Google Scholar 

  • Browse JA, McCourt PJ, Somerville CR (1985) A mutant of Arabidopsis lacking a chloroplast-specific lipid. Science 227: 763–765

    Article  PubMed  CAS  Google Scholar 

  • Browse JA, Warwick N, Somerville CR, Slack CR (1986) Fluxes through the prokaryotic and eukaryotic pathways of lipid synthesis in the 16:3 plant Arabidopsis thaliana. Biochem J 235: 25–31

    PubMed  CAS  Google Scholar 

  • Christiansson A, Kuypers FA, Roelofsen B, Op Den Kamp JAF, Van Deenen LLM (1985) Lipid molecular shape affects erythrocyte morphology: A study involving replacement of native phosphatidylcholine with different species followed by treatment of cells with sphingomyelinase c or phospholipase A2. J Cell Biol 101: 1455–1462

    Article  PubMed  CAS  Google Scholar 

  • Feldmann KA (1991) T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J 1: 71–82

    Article  CAS  Google Scholar 

  • Gounaris K, Brain ARR, Quinn PJ, Williams WP (1984) Structural reorganisation of chloroplast thylakoid membranes in response to heat-stress. Biochim Biophys Acta 766: 198–208

    Article  CAS  Google Scholar 

  • Gounaris K, Mannock DD, Sen A, Brain APR, Williams WP, Quinn PJ (1983) Polyunsaturated fatty acyl residues of galactolipids are involved in the control of bilayer/nonbilayer lipid transitions in higher plant chlo-roplasts. Biochim Biophys Acta 732: 229–242

    Article  CAS  Google Scholar 

  • Gruner SM, Cullis PR, Hope MJ, Tilcock CPS (1985) Lipid polymorphism: The molecular basis of nonbilayer phases. Ann Rev Biophs Chem 14: 211–242

    Article  CAS  Google Scholar 

  • Heinz E (1993) Biosynthesis of polyunsaturated fatty acids. In TS Moore, ed, Lipid Metabolism in Plants. CRC Press, Boca Raton, FL, pp 33–89

    Google Scholar 

  • Hugly S, Kunst L, Browse J, Somerville C (1989) Enhanced thermal tolerance and altered chloroplast ultrastructure in a mutant of Arabidopsis deficient in lipid desaturation. Plant Physiol 90: 1134–1142

    Article  PubMed  CAS  Google Scholar 

  • Hugly S, McCourt P, Browse J, Patterson GW, Somerville C (1990) A chilling sensitive mutant of Arabidopsis with altered steryl-ester metabolism. Plant Physiol 93: 1053–1062

    Article  PubMed  CAS  Google Scholar 

  • Hugly S, Somerville C (1992) A role for membrane lipid polyunsaturation in chloroplast biogenesis at low temperature. Plant Physiol 99: 197–202

    Article  PubMed  CAS  Google Scholar 

  • Israelachvili JN, Marcelja S, Horn RG (1980) Physical principles of membrane organization. Quart Rev Biophys 2: 121–200

    Article  Google Scholar 

  • Joyard J, Block MA, Malberbe A, Marachal E, Douce R (1993) Origin and synthesis of galactolipid and sulfo-lipid headgroups. In TS Moore, Jr, ed, Lipid Metabolism in Plants. CRC Press, Boca Raton, pp 231–258

    Google Scholar 

  • Krieg DR (1963) Ethyl methanesulfonate-induced reverison of bacteriophage T4rII mutants. Genetics 48: 561–580

    PubMed  CAS  Google Scholar 

  • Kunst L, Browse J, Somerville C (1989) A mutant of Arabidopsis deficient in desaturation of palmitic acid in leaf lipids. Plant Physiol 90: 943–947

    Article  PubMed  CAS  Google Scholar 

  • Lindqvist Y, Huang W, Schneider G, Shanklin J (1996) Crystal structure of Æ9 stearoyl-acyl carrier protein de-saturase from castor seed and its relationship to other di-iron proteins. EMBO J 15: 4081–4092

    PubMed  CAS  Google Scholar 

  • Lyons JM (1973) chilling injury in plants. Annu Rev Plant Physiol 24: 445–466

    Article  CAS  Google Scholar 

  • Lyons JM, Graham D, Raison JK, eds (1979) Low Temperature Stress in Plants. Academic Press, New York

    Google Scholar 

  • Marsh D (1990) CRC Handbook of Lipid Bilayers. CRC Press, Boca Raton, 387 pp

    Google Scholar 

  • McCourt PJ, Kunst L, Browse J, Somerville CR (1987) The effects of reduced amounts of lipid unsaturation on chloroplast ultrastructure and photosynthesis in a mutant of Arabidopsis. Plant Physiol 84: 353–360

    Article  PubMed  CAS  Google Scholar 

  • McEIhaney RN (1989) The influence of membrane lipid composition and physical properties of membrane structure and function in Acholeplasma laidlawii. Crit Rev Microbiol 17: 1–32

    Article  Google Scholar 

  • McKeon TA, Stumpf PK (1982) Purification and characterization of the stearoyl-acyl carrier protein desaturase and the acyl-acyl carrier protein thioesterase from maturing seeds of safflower. J Biol Chem 257: 12141–12147

    PubMed  CAS  Google Scholar 

  • Miquel M, Browse J (1992) Arabidopsis mutants deficient in polyunsaturated fatty acid synthesis. Biochemical and genetic characterization of a plant oleoyl-phosphatidylcholine desaturase. J Biol Chem 267: 1502–1509

    PubMed  CAS  Google Scholar 

  • Miquel M, James D, Dooner H, Browse J (1993) Arabidopsis requires polyunsaturated lipids for low temperature survival. Proc Natl Acad Sci USA 90: 6208–6212

    Article  PubMed  CAS  Google Scholar 

  • Moir D, Botstein D (1982) Determination of the order of gene function in the yeast nuclear division pathway using cs and ts mutants. Genetics 100: 565–577

    PubMed  CAS  Google Scholar 

  • Moore TS (1982) Phospholipid biosynthesis. Ann Rev Plant Physiol 33: 235–259

    Article  CAS  Google Scholar 

  • Murata N (1983) Molecular species composition of phosphatidylglycerols from chilling-sensitive and chilling-resistant plants. Plant Cell Physiol 24: 81–86

    CAS  Google Scholar 

  • Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi H, Tasaka Y, Nishida I (1992) Genetically engineered alteration in the chilling sensitivity of plants. Nature 356: 313–326

    Article  Google Scholar 

  • Murata N, Nishida I (1990) Lipids in relation to chilling sensitivity of plants. In CY Wang, ed, Chilling Injury of Horticultural Crops. CRC Press, Boca Raton, FL, pp 181–199

    Google Scholar 

  • Murata N, Sato N, Takahashi N, Hamazaki Y (1982) Compositions and positional distributions of fatty acids in phospholipids from leaves of chilling-sensitive and chilling-resistant plants. Plant Cell Physiol 23: 1071–1079

    CAS  Google Scholar 

  • Murata N, Yamaya J (1984) Temperature-dependent phase behavior of phosphatidylglycerols from chilling-sensitive and chilling-resistant plants. Plant Physiol 74: 1016–1024

    Article  PubMed  CAS  Google Scholar 

  • Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J (1994) The Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6: 147–158

    PubMed  CAS  Google Scholar 

  • Patterson BD, Reid MS (1990) Genetic and environmental influences on the expression of chilling injury. In CY Wang, ed, Chilling Injury of Horticultural Crops. CRC Press, Boca Raton, pp 87–112

    Google Scholar 

  • Patterson GW, Hugly S, Harrison D (1993) Sterols and phytyl esters of Arabidopsis thaliana under normal and chilling temperatures. Phytochemistry 33: 1381–1383

    Article  CAS  Google Scholar 

  • Quinn PJ, Joo F, Vigh L (1989) The role of unsaturated lipids in membrane structure and stability. Prog Biophys Mol Biol 53: 71–103

    Article  PubMed  CAS  Google Scholar 

  • Raison JK, Orr GR (1990) Proposals for a better understanding of the molecular basis of chilling injury. In C-Y Wang, ed, Chilling Injury of Horticultural Crops. CRC Press, Boca Raton, pp 145–164

    Google Scholar 

  • Raison JK, Wright LC (1983) Thermal phase transitions in the polar lipids of plant membranes: Their induction by disaturated phospholipids and their possible relation to chilling injury. Biochim. Biophys Acta 731: 69–74

    Article  CAS  Google Scholar 

  • Roughan PG, Slack CR (1982) Cellular organization of glycerolipid metabolism. Ann Rev Plant Physiol 33: 97–123

    Article  CAS  Google Scholar 

  • Schmidt H, Dresselhaus T, Buck F, Heinz E (1994) Purification and PCR-based cDNA cloning of a plastidial n-6 desaturase. Plant Mol. Biol. 26: 631–642

    Article  PubMed  CAS  Google Scholar 

  • Schneider JC, Hugly S, Somerville CR (1995) Chilling sensitive mutants of Arabidopsis. Plant Mol Biol Rep 13: 11–17

    Article  Google Scholar 

  • Schneider JC, Nielsen E, Somerville C (1995) A chilling-sensitive mutant of Arabidopsis is deficient in chloro-plast protein accumulation at low temperature. Plant Cell Environ 18: 23–31

    Article  CAS  Google Scholar 

  • Shanklin J, Somerville CR (1991) The cDNA clones for stearoyl-ACP desaturase from higher plants are not homologous to yeart or mammalian genes encoding stearoyl-CoA deasturase. Proc Natl Acad Sci USA 88: 2510–2514

    Article  PubMed  CAS  Google Scholar 

  • Shimakata T, Stumpf PK (1982) Isolation and function of spinach leaf ß-ketoacyl-[acyl-carrier-protein] syn-thases. Proc Natl Acad Sci USA 79: 5808

    Article  PubMed  CAS  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175: 720–731

    Article  PubMed  CAS  Google Scholar 

  • Slack CR, Roughan PG, Terpstra J (1976) Some properties of a microsomal oleate desaturase from leaves. Bio-chem J 155:71–80

    CAS  Google Scholar 

  • Somerville C, Browse J (1991) Plant lipids: Metabolism mutants and membranes. Science 252: 80–87

    Article  PubMed  CAS  Google Scholar 

  • Wang CY, ed (1990) Chilling Injury of Horticultural Crops. CRC Press, Boca Raton

    Google Scholar 

  • Warren RC (1987) Physics and the Architecture of Cell Membranes. Adam Hilger, Bristol

    Google Scholar 

  • Wolter FP, Schmidt R, Heinz E (1992) Chilling sensitivity of Arabidopsis thaliana with genetically engineered membrane lipids. EMBO J. 11: 4685–4692

    PubMed  CAS  Google Scholar 

  • Wu J, Browse J (1995) Elevated levels of high-melting-point phosphatidylglycerols do not induce chilling sensitivity in a mutant of Arabidopsis. The Plant Cell 7: 17–27

    PubMed  CAS  Google Scholar 

  • Wu JW, Lightner J, Warwick N, Browse J (1997) Low-temperature damage and subsequent recovery of fab 1 mutant Arabidopsis exposed to 2°C. Plant Physiol. (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tokuhisa, J., Wu, J., Miquel, M., Xin, Z., Browse, J. (1997). Investigating the Role of Lipid Metabolism in Chilling and Freezing Tolerance. In: Li, P.H., Chen, T.H.H. (eds) Plant Cold Hardiness. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0277-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0277-1_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0279-5

  • Online ISBN: 978-1-4899-0277-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics