Role of Antibody Signaling in Inducing Tumor Dormancy

  • Jonathan W. Uhr
  • Radu Marches
  • Emil Racila
  • Thomas F. Tucker
  • Robert Hsueh
  • Nancy E. Street
  • Ellen S. Vitetta
  • Richard H. Scheuermann
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 406)

Abstract

Cancer dormancy is a well-recognized clinical phenomenon in which tumor cells are present, but the tumor burden does not increase for long periods of time1–3. However, tumor cells can regrow many years later. In breast cancer, there is a steady rate of recurrence 10 to 20 years after removal of the primary tumorl3,4 and the recurrent tumor frequently grows at a rapid rate(5). A particularly pertinent example is the low grade (follicular) form of non-Hodgkin’s lymphoma (NHL) in which long-term remissions are common but, eventually, virtually all die of a recurrence. Levy and Miller(5) have treated such patients with monoclonal anti-idiotype (Id) and have achieved remissions in a high proportion of patients. Relapses, many caused by Id-negative variants, are frequent indicating that the antibody (Ab) was particularly effective in inducing dormancy in cells bearing the corresponding idiotope but that hypermutation of VH and VL genes eventually allow some tumor cells from the original clone to escape(5–7).

Keywords

Cell Cycle Arrest Lymphoma Cell SCID Mouse Daudi Cell Tumor Dormancy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stewart, T.H.M., A.C. Hollinshead, and S. Raman. Tumor dormancy initiation maintenance and termination in animals and humans. Can. J. Surg. 34: 321–325, 1991.PubMedGoogle Scholar
  2. 2.
    Meltzer, A. Dormancy and breast cancer. J. Surg. Oncol. 43: 181–188, 1990.Google Scholar
  3. 3.
    Berkowitz, H., F. Rosata, and C.P. Neiby. Late recurrence of carcinoma of breast: Case report and literature survey. Amer. Surg. 32: 287–289, 1966.Google Scholar
  4. 4.
    Henderson, I.C., J.R. Harris, D.W. Kinne, and S. Hellman. Cancer of the breast. IN: Cancer: Principles and Practice of Oncology (VT. DeVita, Jr., S. Hellman, and S.A. Rosenberg, Eds.), Philadelphia: J.B. Lippincott, pp. 1197–1268, 1989.Google Scholar
  5. 5.
    Levy, R. and A.R. Miller. Therapy of lymphoma directed at idiotypes. Monographs. J. Natl. Cancer Inst. 10: 61–68, 1990.Google Scholar
  6. 6.
    Meeker, T., J. Lowder, M.L. Cleary, S. Stewart, R. Warnke, J. Sklar, and R. Levy. Emergence of idiotype variants during treatment of B-cell lymphoma with anti-idiotype antibodies. N. Engl. J. Med. 312: 1658–1665, 1985.Google Scholar
  7. 7.
    Brown, S.L., R.A. Miller, S.J. Horning, D. Czerwinski, S.M. Hart, R. McElderry, T. Basham, R.A. Warnke, T.C. Merigan, and R. Levy. Treatment of B-cell lymphomas with anti-idiotype antibodies alone and in combination with alpha interferon. Blood 73: 651–661, 1989.PubMedGoogle Scholar
  8. 8.
    Uhr, J.W., T. Tucker, R.D. May, H. Siu, and E.S. Vitetta. Cancer dormancy: Studies of the murine BCL1 lymphoma. Cancer Res. 51: 50455–50535, 1991.Google Scholar
  9. 9.
    Yefenof, E., L.J. Picker, R.H. Scheuermann, T.F. Tucker, E.S. Vitetta, and J.W. Uhr. Cancer dormancy: Isolation and characterization of dormant lymphoma cells. Proc. Natl. Acad. Sci. USA 90: 1829–1833, 1993.PubMedCrossRefGoogle Scholar
  10. 10.
    Racila, E., R.H. Scheuermann, L.J. Picker, E. Yefenof, T. Tucker, W. Chang, R. Marches, N.E. Street, E.S. Vitetta, and J.W. Uhr. Tumor dormancy and cell signaling. II. Antibody as an agonist in inducing dormancy of a B cell lymphoma in SCID mice. J. Exp. Med. 181: 1539–1550, 1995.PubMedCrossRefGoogle Scholar
  11. 11.
    Scheuermann, R.H., E. Racila, T. Tucker, E. Yefenof, N.E. Street, E.S. Vitetta, L.J. Picker, and J.W. Uhr. Lyn tyrosine kinase signals cell cycle arrest but not apoptosis in B-lineage lymphoma cells. Proc. Natl. Acad. Sci. USA 91: 4048–4052, 1994.CrossRefGoogle Scholar
  12. 12.
    Marches, R., E. Racila, T.F. Tucker, L. Picker, P. Mongini, R. Hsueh, R.H. Scheuermann, and J.W. Uhr. Tumor dormancy and cell signaling. III: Role of hypercrosslinking of IgM and CD40 on the induction of cell cycle arrest and apoptosis in B lymphoma cells. Therap. Immunol., in press,1995.Google Scholar
  13. 13.
    Goodnow, C.C. Transgenic mice and analysis of B-cell tolerance. Annu. Rev. Immunol. 10: 489–518, 1992.CrossRefGoogle Scholar
  14. 14.
    Nossal, G.J. Cellular and molecular mechanics of B lymphocyte tolerance. Adv. Immunol. 52: 283–331, 1992.PubMedCrossRefGoogle Scholar
  15. 15.
    Hasbold, J. and G.G.B. Klaus. Anti-immunoglobulin antibodies induce apoptosis in immature B cell lymphomas. Eur. J. Immunol. 20: 1685–1690, 1990.Google Scholar
  16. 16.
    Parry, S.L., M.J. Holman, J. Hasbold, and G.G.B. Klaus. Plastic-immobilized anti-Is or anti-6 antibodies induce apoptosis in mature murine B lymphocytes. Eur. J. Immunol. 24: 974–979, 1994.Google Scholar
  17. 17.
    Parry, S.L., J. Hasbold, M. Holman, and G.B. Klaus. Hypercrosslinking surface IgM or IgD receptors on mature B cells induces apoptosis that is reversed by costimulation with IL-4 and anti-CD40. J. Immunol. 152: 2821–2829, 1994.PubMedGoogle Scholar
  18. 18.
    Scott, D.W., M. Vankataraman, and J.J. Jandinski. Multiple pathways of B lymphocyte tolerance. Immunol. Rev. 43: 241–280, 1979.PubMedCrossRefGoogle Scholar
  19. 19.
    Nossal, G.J.V., B.L. Pike, J.M. Teale, J.E. Layton, T.W. Kay, and F.L. Battye. Cell fractionation methods and the target cells for clonal abortion of B lymphocytes. Immunol. Rev. 43: 185–216, 1979.CrossRefGoogle Scholar
  20. 20.
    Cambier, J.C. and J.T. Ransom. Molecular mechanisms of transmembrane signaling in B lymphocytes. Annu. Rev. Immunol. 5: 175–199, 1987.CrossRefGoogle Scholar
  21. 21.
    Gold, M. and A.L. DeFranco. Biochemistry of B lymphocyte activation. Adv. Immunol. 55: 221–295, 1994.PubMedCrossRefGoogle Scholar
  22. 22.
    Adachi, M., R. Watanabe-Fukunaga, and S. Nagata. Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of 1pr mice. Natl. Acad. Sci. USA 90: 1756–1760, 1993.CrossRefGoogle Scholar
  23. 23.
    Chu, J.L., J. Drappa, A. Parnassa, and K.B. Elkon. The defect in Fas mRNA expression in MRL/lpr mice is associated with insertion of the retrotransposon, ETn. J. Exp. Med. 178: 723–730, 1993.PubMedCrossRefGoogle Scholar
  24. 24.
    Wu, J., T. Zhou, J. He, and J.D. Mountz. Autoimmune disease in mice due to integration of an endogenous retrovirus in an apoptosis gene. J. Exp. Med. 178: 461–468, 1993.CrossRefGoogle Scholar
  25. 25.
    Dhein, J., H. Walczak, C. Bäumler, K.-M. Debatin, and P.H. Krammer. Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature 373: 438–441, 1995.PubMedCrossRefGoogle Scholar
  26. 26.
    Brunner, T., R.J. Mogil, D. LaFace, N.J. Yoo, A. Mahboubi, F. Echeverri, S.J. Martin, W.R. Force, D.H. Lynch, C.F. Ware, and D.R. Green. Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature 373: 441–444, 1995.PubMedCrossRefGoogle Scholar
  27. 27.
    Ju, S.-T., D.J. Panka, H. Cui, R. Ettinger, M. El-Khatib, D.H. Sherr, B.Z. Stanger, and A. Marshak-Rothstein. Fas (CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373: 444–448, 1995.PubMedCrossRefGoogle Scholar
  28. 28.
    Racila, E., R. Hsueh, R. Marches, T.F. Tucker, P.H. Krammer, R.H. Scheuermann, and J.W. Uhr. Tumor dormancy and cell signaling. IV. Anti-p induced apoptosis in human B lymphoma cells is not caused by an APO-1 - APO-1 ligand interaction. Proc. Natl. Acad. Sci. USA, in press,1995.Google Scholar
  29. 29.
    Ju, S.T., H. Cui, D.J. Panka, R. Ettinger, and A. Marshak-Rothstein. Participation of target Fas protein in apoptosis pathway induced by CD4+ Thl and CD8+ cytotoxic T cells. Proc. Natl. Acad. Sci. USA 91: 4185–4189, 1994.PubMedCrossRefGoogle Scholar
  30. 30.
    Berke, G. The CTL’s kiss of death. Cell 81: 9–12, 1995.PubMedCrossRefGoogle Scholar
  31. 31.
    Vasile, S., J.E. Coligan, M. Yoshida, and B.K. Seon. Isolation and chemical characterization of the human B29 and mb-1 proteins of the B cell antigen receptor complex. Mol. Immunol. 31: 419–427, 1994.PubMedCrossRefGoogle Scholar
  32. 32.
    Nakamura, T., M.C. Sekar, H. Kubagawa, and M. Cooper. Signal transduction in human B cells initiated via Igß ligation. Int. Immunol. 10: 1309–1315, 1993.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Jonathan W. Uhr
    • 1
  • Radu Marches
    • 1
  • Emil Racila
    • 1
  • Thomas F. Tucker
    • 1
  • Robert Hsueh
    • 2
  • Nancy E. Street
    • 1
  • Ellen S. Vitetta
    • 1
  • Richard H. Scheuermann
    • 2
  1. 1.Department of Microbiology and Cancer Immunobiology CenterDallasUSA
  2. 2.Laboratory of Molecular Pathology and Department of PathologyUniversity of Texas Southwestern Medical Center at DallasDallasUSA

Personalised recommendations