Cytotoxic Lymphocyte Killing Enters the Ice Age

  • Seamus J. Martin
  • Gustavo P. Amarante-Mendes
  • Douglas R. Green
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 406)


Apoptosis, a mode of cell death that culminates in early recognition (i.e. before membrane rupture) of dying cells by phagocytes, appears to have been highly conserved throughout evolution. Apoptosis can be triggered by a diverse array of both physiological and pathological stimuli all of which seem to engage the same cellular machinery that is responsible for the destruction of the cell from within. Thus, although the proximal signalling events that can result in apoptosis can vary from one stimulus to another, it is likely that these signals all converge at some point on a common set of effector molecules which we will call ‘the executioner’.


Cysteine Protease Adenomatous Polyposis Coli Family Protease Cell Death Machinery Apoptotic Thymocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Russell, J. H., Masakowski, V., Rucinsky, T., and Philips, G., Mechanisms of immune lysis III. Characterization of the nature and kinetics of the cytotoxic T lymphocyte-induced nuclear lesion in the target, J. Immunol., 128: 2087 (1982).PubMedGoogle Scholar
  2. 2.
    Duke, R. C., Chervenak, R., and Cohen, J. J., Endogenous endonuclease-induced DNA fragmentation; an early event in cell-mediated cytolysis, Proc. Natl. Acad. Sci. USA 80: 6361 (1983).PubMedCrossRefGoogle Scholar
  3. 3.
    Henkart, P. A., Mechanism of lymphocyte-mediated cytotoxicity, Annu. Rev. Immunol. 3: 31 (1985).PubMedCrossRefGoogle Scholar
  4. 4.
    Smyth, M. J., and Trapani, J. A., Granzymes: exogenous proteinases that induce target cell apoptosis, Immunol. Today 16: 202 (1995).PubMedCrossRefGoogle Scholar
  5. 5.
    Liu, C.- C., Walsh, C. M., and Young, J. D. -E., Perforin: structure and function. Immunol. Today 16: 194 (1995).PubMedCrossRefGoogle Scholar
  6. 6.
    Duke, R. C., Sellins, K. S., and Cohen, J. J., Cytotoxic lymphocyte-derived lytic granules do not induce DNA fragmentation in target cells, J. Immunol. 141: 2191 (1988).PubMedGoogle Scholar
  7. 7.
    Kagi, D., Vignaux, F., Ledermann, B., Burki, K., Depraetere, V., Nagata, S., Hengartner, H., and Goldstein, P., Fas and perforin as major mechanisms of T-cell mediated cytotoxixity, Science 265: 528 (1994).PubMedCrossRefGoogle Scholar
  8. 8.
    Shi, L., Kraut, R. P., Aebersold, R., and Greenberg, A. H., A natural killer cell granule protein that induces DNA fragmentation and apoptosis, J. Exp. Med. 175:553- (1992).Google Scholar
  9. 9.
    Shi, L., Kam, C. M., Powers, J. C., Aebersold, R., and Greenberg, A. H., Purification of three cytotoxic lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target cell interactions, J. Exp. Med. 176: 1521 (1992).PubMedCrossRefGoogle Scholar
  10. 10.
    Heusel, J. W., Wesselschmidt, R. L., Shresta, S., Russell, J. H., and Ley, T. J., Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogenic target cells, Cell 76: 977 (1994).PubMedCrossRefGoogle Scholar
  11. 11.
    Shresta, S., Maclvor, D. M., Heusel, J. W., Russell, J. H., and Ley, T. J., Natural killer and lymphokine-activated killer cells require granzyme B for the rapid induction of apoptosis in susceptible target cells, Proc. Natl. Acad. Sci. USA 92: 5679 (1995).PubMedCrossRefGoogle Scholar
  12. 12.
    Ebnet, K., Hausmann, M., Lehmann-Grube, F., Mullbacher, A., Kopf, M., Lamers, M., and Simon, M. M., Granzyme A-deficient mice retain potent cell-mediated cytotoxicity, EMBO J. 14: 4230 (1995).PubMedGoogle Scholar
  13. 13.
    Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M., and Horvitz, H. R. (1993). The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 ß-converting enzyme. Cell 75, 641–652.PubMedCrossRefGoogle Scholar
  14. 14.
    Thornberry, N. A., Bull, H. G., Calaycay, J. R., Chapman, K. T., Howard, A. D., Kostura, M. J., Miller, D. K., Molineaux, S. M., Weidner, J. R., Aunins, J., Elliston, K. O., Ayala, J. M., Casano, F. J., Chin, J., Ding, G. J.-F., Egger, L. A., Gaffney, E. P., Limjuco, G., Palyha, O. C., Raju, S. M., Ralando, A. M., Salley, J. P., Yamin, T. T., Lee, T. D., Shivley, J. E., MacCross, M., Mumford, R. A., Schmidt, J. A., and Tocci, M. J., A novel heterodimeric cysteine protease is required for interleukin-113 processing in monocytes, Nature 356: 768 (1992).PubMedCrossRefGoogle Scholar
  15. 15.
    Xue, D., and Horvitz, H. R., Inhibition of the Caenorhabditis elegans cell-death protease CED-3 by a CED-3 cleavage site in baculovirus p35 protein, Nature 377: 248 (1995).PubMedCrossRefGoogle Scholar
  16. 16.
    Hugunin, M., Quintal, L. J., Mankovich, J. A., and Ghayur, T., Protease activity of in vitro transcribed and translated C. elegans cell death gene (ced-3) product, J. Biol. Chem. 271: 3517 (1996).PubMedCrossRefGoogle Scholar
  17. 17.
    Kaufmann, S. H., Induction of endonucleolytic DNA cleavage in human acute myelogenous leukemia cells by etoposide, camptothecin, and other cytotoxic anticancer drugs; a cautionary note, Cancer Res. 49: 5870 (1989).PubMedGoogle Scholar
  18. 18.
    Kaufmann, S. H., Desnoyers, S., Ottaviano, Y., Davidson, N. E., and Poirier, G. G., Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis, Cancer Res. 53: 3976 (1993).PubMedGoogle Scholar
  19. 19.
    Sarin, A., Adams, D. H., and Henkart, P. A., Protease inhibitors selectively block T cell receptor-triggered programmed cell death in a murine T cell hybridoma and activated peripheral T cells, J. Exp. Med. 178: 1693 (1993).PubMedCrossRefGoogle Scholar
  20. 20.
    Sarin, A., Clerici, M., Blatt, S. P., Hendrix, C. W., Shearer, G. M., and Henkart, P. A., Inhibition of activation-induced programmed cell death and restoration of defective immune responses of HI V+ donors by cysteine proteases, J. Immunol. 153: 862 (1994).PubMedGoogle Scholar
  21. 21.
    Fearnhead, H. O., Rivett, A. J., Dinsdale, D., and Cohen, G. M., A pre-existing protease is a common effector of thymocyte apoptosis mediated by diverse stimuli, FEBS Lett. 357: 242 (1995).PubMedCrossRefGoogle Scholar
  22. 22.
    Ray, C. A., Black, R. A., Kronheim, S. R., Greenstreet, T. A., Sleath, P. R., Salvesen, G. S., and Pickup, D. J., Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-13 converting enzyme, Cell 69: 597 (1992).PubMedCrossRefGoogle Scholar
  23. 23.
    Gagliardini, V., Fernandez, P-A., Lee, R. K. K., Drexler, H. C. A., Rotello, R. J., Fishman, M. C., and Yuan, J., Prevention of vertebrate neuronal death by the CrmA gene, Science 263: 826 (1994).PubMedCrossRefGoogle Scholar
  24. 24.
    Wang, L., Miura, M., Bergeron, L., Zhu, H., and Yuan, J., Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death, Cell 78: 739 (1994).PubMedCrossRefGoogle Scholar
  25. 25.
    Enari, M., Hug, H., and Nagata, S., Involvement of an ICE-like protease in Fas-mediated apoptosis., Nature 375: 78 (1995).PubMedCrossRefGoogle Scholar
  26. 26.
    Los, M., Van de Craen, M., Penning, L. C., Schenk, H., Westendorp, M., Baeuerle, P. A., Droge, W., Krammer, P. H., Fiers, W., and Schulze-Osthoff, K., Requirement for an ICE/CED-3 protease for Fas/APO-1-mediated apoptosis, Nature 275: 81 (1995).CrossRefGoogle Scholar
  27. 27.
    Miura, M., Friedlander, R. M., and Yuan, J., Tumor necrosis factor-induced apoptosis is mediated by a CrmA-sensitive cell death pathway, Proc. Natl. Acad. Sci. USA 92: 8318 (1995).PubMedCrossRefGoogle Scholar
  28. 28.
    Tewari, M., and Dixit, V. M., Fas-and tumor necrosis factor-induced apoptosis is inhibited by the poxvirus CrmA gene product, J. Biol. Chem. 270: 3255 (1995).PubMedCrossRefGoogle Scholar
  29. 29.
    Tewari, M., Quan, L. T., O’Rourke, K., Desnoyers, S., Zeng, Z., Beidler, D. R., Poirier, G. G., Salvesen, G. S., and Dixit, V. M., YAMA/CPP32(3, a mammalian homolog of Ced-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase, Cell 81: 801 (1995).PubMedCrossRefGoogle Scholar
  30. 30.
    Tewari, M., Beidler, D. R., and Dixit, V. M., CrmA-inhibitable cleavage of the 70-kDa protein component of the U 1 small nuclear ribonucleoprotein during Fas-and Tumor necrosis factor-induced apoptosis, J. Biol. Chem. 270: 18738 (1995).PubMedCrossRefGoogle Scholar
  31. 31.
    Tewari, M., Telford, W. G., Miller, R. A., and Dixit, V. M., CrmA, a poxvirus-encoded serpin, inhibits cytotoxic T-lymphocyte-mediated apoptosis, J. Biol. Chem. 270: 3255 (1995).PubMedCrossRefGoogle Scholar
  32. 32.
    Bump, N. J., Hackett, M., Hugunin, M., Seshagiri, S., Brady, K., Chen, P., Ferenz, C., Franklin, S., Ghayur, T., Li, P., Licari, P., Mankovich, J., Shi, L., Greenberg, A. H., Miller, L. K., and Wong, W. W., Inhibition of ICE family proteases by baculovirus anti-apoptotic protein p35, Science 269: 1885 (1995).PubMedCrossRefGoogle Scholar
  33. 33.
    Lazebnik, Y. A., Kaufmann, S. H., Desnoyers, S., Poirier, G. G., and Earnshaw, W. C., Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE, Nature 371: 346 (1994).PubMedCrossRefGoogle Scholar
  34. 34.
    Nicholson, D. W., Ali, A., Thornberry, N. A., Vaillancourt, J. P., Ding, C. K., Gallant, M., Gareau, Y., Griffin, P. R., Labelle, M., Lazebnik, Y. A., Munday, N. A., Raju, S. M., Smulson, M. E., Yamin, T.-T., Yu, V. L., and Miller, D. K., Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis, Nature 376: 37 (1995).PubMedCrossRefGoogle Scholar
  35. 35.
    Schlegel, J., Peters, I., Orrenius, S., Miller, D. K., Thornberry, N. A., Yamin, T.-T., and Nicholson, D. W., CPP32/apopain is a key interleukin-113 converting enzyme-like protease involved in fas-mediated apoptosis, J. Biol. Chem. 271: 1841 (1996).PubMedCrossRefGoogle Scholar
  36. 36.
    Pronk, G. J., Ramer, K., Amiri, P., and Williams, L. T., Requirement of an ICE-like protease for induction of apoptosis and ceramide generation by reaper, Science 271: 808 (1996).PubMedCrossRefGoogle Scholar
  37. 37.
    Martin, S. J., and Green, D. R., Protease activation during apoptosis: death by a thousand cuts?, Cell 82: 349 (1995).PubMedCrossRefGoogle Scholar
  38. 38.
    Neamati, N., Fernandez, A., Wright, S., Kiefer, J., and McConkey, D. J., Degradation of lamin B1 precedes oligonucleosomal DNA fragmentation in apoptotic thymocytes and isolated thymocyte nuclei, J. Immunol. 154: 3788 (1995).PubMedGoogle Scholar
  39. 39.
    Lazebnik, Y. A., Takahashi, A., Moir, R. D., Goldman, R. D., Poirier, G. G., Kaufmann, S. H., and Earnshaw, W. C., Studies of the lamin proteinase reveal multiple parallel biochemical pathways during apoptotic execution, Proc. Natl. Acad. Sci. USA 92: 9042 (1995).PubMedCrossRefGoogle Scholar
  40. 40.
    Martin, S. J., O’Brien, G. A., Nishioka, W. K., McGahon, A. J., Saido, T., and Green, D. R., Proteolysis of Fodrin (nonerythroid spectrin) during apoptosis, J. Biol. Chem. 270: 6425 (1995).PubMedCrossRefGoogle Scholar
  41. 41.
    Wright, S. C., Wei, Q. S., Zhong, J., Zheng, H., Kinder, D. H., and Larrick, J. W., Purification of a 24 kD protease from apoptotic tumor cells that activates DNA fragmentation, J. Exp. Med. 180: 2113 (1994).PubMedCrossRefGoogle Scholar
  42. 42.
    Chow, S. C., Weis, M., Kass, G. E. N., Holmstrom, T. H., Eriksson, J. E., and Orrenius, S., Involvement of multiple proteases during Fas-mediated apoptosis in T lymphocytes, FEBS Lett. 364: 134 (1995).PubMedCrossRefGoogle Scholar
  43. 43.
    Enari, M., Hase, A., and Nagata, S., Apoptosis by a cytosolic extract from Fas-activated cells, EMBO J. 14: 5201 (1995).PubMedGoogle Scholar
  44. 44.
    Martin, S. J., Newmeyer, D. D., Mathias, S., Farschon, D., Wang, H.-G., Reed, J. C., Kolesnick, R. N., and Green, D. R., Cell-free reconstitution of Fas-, UV radiation-and ceramide-induced apoptosis, EMBO J. 14: 5191 (1995).PubMedGoogle Scholar
  45. 45.
    Martin, S. J., Amarante-Mendes, G. P., Shi, L., Chuang, T.-H., Casiano, C. A., O’Brien, G. A., Fitzgerald, P., Tan, E. M., Bokoch, G. M., Greenberg, A. H., and Green, D. R., The cytotoxic cell protease granzyme B initiates apoptosis in a cell-free system by proteolytic processing and activation of the ICE/CED-3 family protease, CPP32, via a novel two-step mechanism, EMBO J. In Press.Google Scholar
  46. 46.
    Darmon, A. J., Ehrman, N., Caputo, A., Fujinaga, J., and Bleackley, R. C., The cytotoxic T cell proteinase granzyme B does not activate Interleukin-1 ß-converting enzyme, J. Biol. Chem. 269: 32043 (1994).PubMedGoogle Scholar
  47. 47.
    Darmon, A. J., Nicholson, D. W., and Bleackley, R. C., Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B, Nature 377: 446 (1995).PubMedCrossRefGoogle Scholar
  48. 48.
    Faucheu, C., Diu, A., Chan, A. W. E., Blanchet, A.-M., Miossec, C., Herve, F., Collard-Dutilleul, V., Gu, Y., Aldape, R. A., Lippke, J. A., Rocher, C., Su, M. S.-S., Livingston, D. J., Hercend, T., and Lalanne, J.-L., A novel human protease similar to the interleukin-113 converting enzyme induces apoptosis in transfected cells, EMBO J. 14: 1914 (1995).PubMedGoogle Scholar
  49. 49.
    Kamens, J., Paskind, M., Hugunin, M., Talanian, R. V., Allen, H., Banach, D., Bump, N., Hackett, M., Johnston, C. G., Li, P., Mankovich, J. A., Terranova, M., and Ghayur, T., Identification and characterization of Ich-2, a novel member of the interleukin-113-converting enzyme family of cysteine proteases, J. Biol. Chem. 270: 15250 (1995).PubMedCrossRefGoogle Scholar
  50. 50.
    Munday, N. A., Vaillancourt, J. P., Ali, A., Casano, F. J., Miller, D. K., Molineaux, S. M., Yamin, T. T., Yu, V. L. and Nicholson, D. W., Molecular cloning and pro-apoptotic activity of ICErelII and ICErellll members of the ICE/CED-3 family of cysteine proteases, J. Biol. Chem. 270: 15870 (1995).PubMedCrossRefGoogle Scholar
  51. 51.
    Fernandes-Alnemri, T., Litwack, G., and Alnemri, E. S., Mch2, a new member of the apoptotic Ced-3/Ice-like protease gene family. Cancer Res. 55: 2737 (1995).PubMedGoogle Scholar
  52. 52.
    Fernandes-Alnemri, T., Litwack, G., and Alnemri, E. S., CPP32, a novel apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-tß-converting enzyme, J. Biol. Chem. 269: 30761 (1994).PubMedGoogle Scholar
  53. 53.
    Kumar, S., Kinoshita, M., Noda, M., Copeland, N. G., and Jenkins, N. A., Induction of apoptosis by the mouse Nedd2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell death gene ced-3 and the mammalian IL-lß converting enzyme, Genes and Develop. 8: 1613 (1994).CrossRefGoogle Scholar
  54. 54.
    Fernandes-Alnemri, T., Takahashi, A., Armstrong, R., Krebs, J., Fritz, L., Tomaselli, K. J., Wang, L., Yu, Z., Croce, C. M., Earnshaw, W. C., Litwack, G., and Alnemri, E. S., Mch, 3 a novel human apoptotic cysteine protease highly related to CPP32, Cancer Res. 55: 6045 (1995).PubMedGoogle Scholar
  55. 55.
    Duan, H., Chinnaiyan, A. M., Hudson, P. L., Wing, J. P., He, W.-W., and Dixit, V. M., ICE-LAP3, a novel mammalian homologue of the Caenorhabditis elegans cell death protein Ced-3 is activated during Fas-and tumor necrosis factor-induced apoptosis, J. Biol. Chem. 271: 1621 (1996).PubMedCrossRefGoogle Scholar
  56. 56.
    Lippke, J. A., Gu, Y., Sarnecki, C., Caron, P. R., and Su, M. S.-S., Identification and characterization of CPP32/Mch2 homolog 1, a novel cysteine protease similar to CPP32, J. Biol. Chem. 271: 1825 (1996).PubMedCrossRefGoogle Scholar
  57. 57.
    Kayalar, C., Ord, T., Testa, M. P., Zhong, L.-T., and Bredesen, D. E., Cleavage of actin by ICE to reverse DNAse I inhibition, Proc. Natl. Acad. Sci. USA. 271: 1825 (1996).Google Scholar
  58. 58.
    Browne, S. J., Williams, A. C., Hague, A., Butt, A. J., and Paraskeva, C., Loss of APC protein expressed in human colonic epithelial cells and the appearance of a specific low-molecular weight form is associated with apoptosis in vitro, Int. J. Cancer 59: 56 (1994).PubMedCrossRefGoogle Scholar
  59. 59.
    Voelkel-Johnson, C., Entingh, A. J., Wold, W. S. M., Gooding, L. R., and Laster, S. M., Activation of intracellular proteases is an early event in TNF-induced apoptosis, J. Immunol. 154: 1707 (1995).PubMedGoogle Scholar
  60. 60.
    Casciola-Rosen, L. A., Anhalt, G. J., and Rosen, A., DNA-dependent protein kinase is one of a subset of autoantigens specifically cleaved early during apoptosis, J. Exp. Med. 182: 1625 (1995).PubMedCrossRefGoogle Scholar
  61. 61.
    Brancolini, C., Bendetti, M., and Schneider, C., Microfilament reorganization during apoptosis: the role of Gast, a possible substrate for ICE-like proteases, EMBO J. 14: 5179 (1995).PubMedGoogle Scholar
  62. 62.
    Weaver, V. M., Carson, C. E., Walker, P. R., Chaly, N., Lach, B., Raymond, Y., Brown, D. L., and Sikorska, M., Degradation of nuclear matrix and DNA cleavage in apoptotic thymocytes, J. Cell Sci. 109: 45 (1996).PubMedGoogle Scholar
  63. 63.
    Hsu, H.-L., and Yeh, N.-H., Dynamic changes of NuMA during the cell cycle and possible appearance of a truncated form of NuMA during apoptosis, J. Cell Sci. 109: 277 (1996).PubMedGoogle Scholar
  64. 64.
    Jensen, P. H., Cressey, L. I., Gjertsen, B. T., Madsen, P., Mellgren, G., Hokland, P., Gliemann, J., Doskeland, S. O., Lanotte, M., and Vintermyr, O. K., Cleaved intracellular plasminogen activator inhibitor 2 in human myeloleukemia cells is a marker of apoptosis, Br. J. Cancer 70: 834 (1994).PubMedCrossRefGoogle Scholar
  65. 65.
    Emoto, Y., Manome, Y., Meinhardt, G., Kisaki, H., Kharbanda, S., Robertson, M., Ghayur, T., Wong, W. W., Kamen, R., Weichselbaum, R., and Kufe, D., Proteolytic activation of protein kinase C 6 by an ICE-like protease in apoptotic cells, EMBO J. 14: 6148 (1995).PubMedGoogle Scholar
  66. 66.
    Wang, X., Pai, J., Weidenfeld, E. A., Medina, J. C., Slaughter, C. A., Goldstein, J. L., and Brown, M. S., Purification of an interleukin-113 converting enzyme-related cysteine proteases that cleaves sterol regulatory element-binding proteins between the leucine zipper and transmembrane domains, J. Biol. Chem. 270: 18044 (1995).PubMedCrossRefGoogle Scholar
  67. 67.
    Casciola-Rosen, L. A., Miller, D. K., Anhalt, G. J., and Rosen, A., Specific cleavage of the 70-kDa protein component of the U I small nuclear ribonucleoprotein is a characteristic biochemical feature of apoptotic cell death, J. Biol. Chem. 269: 30–757 (1994).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Seamus J. Martin
    • 1
  • Gustavo P. Amarante-Mendes
    • 1
  • Douglas R. Green
    • 1
  1. 1.Division of Cellular ImmunologyLa Jolla Institute for Allergy and ImmunologyLa JollaUSA

Personalised recommendations