Skip to main content

Autoimmunity Due to Defective NUR77, Fas, and TNF-RI Apoptosis

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 406))

Abstract

Several molecules and pathways known to be of importance in apoptosis have been described in the thymus; however, their contribution to clonal deletion and tolerance induction remains controversial1–4. Although knockout of p53 leads to decreased sensitivity of murine thymocytes to radiation-induced apoptosis, negative selection remains intact5–7. Fas is a cell surface receptor that mediates apoptosis by interaction with a specific ligand and is expressed on most murine thymocytes8–11. Although mutant Fas antigen and Fas ligand cause autoimmune disease in 1pr/lpr and gld/gld mice, respectively10–12 no major negative selection defects have been found in Ipr/lpr mice13–17. Therefore, it is unlikely that Fas antigen is directly involved in negative selection in the thymus, but may be involved in apoptosis during early T cell development in the thymus. We have previously proposed that Fas expression duirng early thymocyte development plays a role in positive selection or pre-positive selection of thymocytes (Figure 1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.J.V. Nossal, Negative selection of lymphocytes. Cell 76: 229 (1994).

    Article  PubMed  CAS  Google Scholar 

  2. P. Golstein, D.M. Ojcius, and J.D. Young, Cell death mechanisms and the immune system. Immunol. Rev. 121: 29 (1991).

    Article  PubMed  CAS  Google Scholar 

  3. B. Lucas, F. Vasseur, and C. Penit, Production, selection, and maturation of thymocytes with high surface density of TCR. J. Immunol. 153: 53 (1994).

    PubMed  CAS  Google Scholar 

  4. J.A. Punt, B.A. Osborne, Y. Takahama, S.O. Sharrow, and A. Singer, Negative selection of CD4+CD8+ thymocytes by T cell receptor-induced apoptosis requires a costimulatory signal that can be provided by CD28. J. Exp. Med. 179: 709 (1994).

    Article  PubMed  CAS  Google Scholar 

  5. A.R. Clarke, C.A. Purdie, D.J. Harrison, R.G. Morris, C.C. Bird, M.L. Hooper, and A.H. Wyllie, Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature. 362: 849 (1993).

    Article  PubMed  CAS  Google Scholar 

  6. S.W. Lowe, E.M. Schmitt, S.W. Smith, B.A. Osborne, and T. Jacks,p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362: 847 (1993).

    Google Scholar 

  7. J.M. Lee and A. Bernstein, p53 mutations increase resistance to ionizing radiation. Proc. Natl. Acad. Sci. USA. 90: 5742 (1993).

    Article  PubMed  CAS  Google Scholar 

  8. T. Suda, T. Takahashi, P. Golstein, and S. Nagata, Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell. 75: 1169 (1993).

    Article  PubMed  CAS  Google Scholar 

  9. S. Nagata and P. Golstein. The Fas death factor. Science. 267: 1449 (1995).

    Article  PubMed  CAS  Google Scholar 

  10. R. Watanabe-Fukunaga, C.I. Brannan, N.G. Copeland, N.A. Jenkins, and S. Nagata, Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature. 356: 314 (1992).

    Article  PubMed  CAS  Google Scholar 

  11. D. Lynch, M. Watson, M.R. Alderson, P.R. Baum, R.E. Miller, T. Tough, M. Gibson, T. Davis-Smith, C.A. Smith, K. Hunter, D. Bhat, W. Din, R.G. Goodwin, and M.F Seldin, The mouse Fas-ligand gene is mutated in gld mice and is part of a TNF family gene cluster. Immunity. 1: 131 (1994).

    Article  PubMed  CAS  Google Scholar 

  12. T. Takahashi, M. Tanaka, C.I. Brannan, N.A. Jenkins, N.G. Copeland, T. Suda, and S. Nagata, Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell. 76: 969 (1994).

    Article  PubMed  CAS  Google Scholar 

  13. B.L. Kotzin, S.K. Babcock, and L.R. Herron, Deletion of potentially self-reactive T cell receptor specificities in L3T4-, Lyt2- T cells of 1pr mice. J. Exp. Med. 168: 2221 (1988).

    Article  PubMed  CAS  Google Scholar 

  14. P.A. Singer, R.S. Balderas, R.J. McEvilly, M. Bobardt, and A.N. Theofilopoulos, Tolerance-related Vß clonal deletions in normal CD4–CD8-, TCR-a/ß+ and abnormal 1pr and gld cell populations. J. Exp. Med. 170: 1869 (1989).

    Article  PubMed  CAS  Google Scholar 

  15. J.D. Mountz, T.M. Smith, and K.S. Toth, Altered expression of self-reactive T cell receptor V(3 regions in autoimmune mice. J. Immunol. 144: 2159 (1990).

    PubMed  CAS  Google Scholar 

  16. T. Zhou, H. Bluethmann, J. Eldridge, K. Berry, and J.D. Mountz, Abnormal thymocyte development and production of autoreactive T cells in TCR transgenic autoimmune mice. J. Immunol. 147: 466 (1991).

    PubMed  CAS  Google Scholar 

  17. T. Zhou, J.D. Mountz, C.K. Edwards, III, K. Berry, and H. Bluethmann, Defective maintenance of T cell tolerance to a superantigen in MRL-1pr/lpr. J. Exp. Med. 176: 1063 (1992).

    Article  CAS  Google Scholar 

  18. R.P. Bissonnette, F. Echeverri, A. Mahboubi, and D.R Green, Apoptotic cell death induced by c-myc is inhibited by bc1–2. Nature. 359: 552 (1992).

    Article  CAS  Google Scholar 

  19. A. Fanidi, E.A. Harrington, and G.I. Evan, Cooperative interaction between c-myc and bcl-2 proto-oncogenes. Nature. 359: 554 (1992).

    Article  PubMed  CAS  Google Scholar 

  20. A. Strasser, A.W. Harris, and S. Cory, Bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell. 67: 889 (1991).

    Google Scholar 

  21. N.C. Moore, G. Anderson, G.T. Williams, and J.J Owen, Developmental regulation of bc1–2 expression in the thymus. Immunology. 81: 115 (1994).

    PubMed  CAS  Google Scholar 

  22. D. Veis, C.M. Sorenson, J.R. Shutter, and S.J. Korsmeyer, Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell. 75: 229 (1993).

    Article  PubMed  CAS  Google Scholar 

  23. M. Katsumata, R.M. Siegel, D.C. Louie, T. Miyashita, Y. Tsujimoto, P.C. Nowell, M.I. Greene, and J.C. Reed, Differential effects of bc1–2 on T and B cells in transgenic mice. Proc. Natl. Acad. Sci. USA. 89: 11376 (1992).

    Article  PubMed  CAS  Google Scholar 

  24. R.M. Siegel, M. Katsumata, T. Miyashita, D.C. Louie, M.I. Greene, and J.C. Reed, Inhibition of thymocyte apoptosis and negative antigenic selection in bcl-2 transgenic mice. Proc. Natl. Acad. Sci., USA. 89: 7003 (1992).

    Article  CAS  Google Scholar 

  25. C.L. Sentman, J.R. Shutter, D. Hockenbery, O. Kanagawa, and S. Korsmeyer, Bc1–2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell. 67: 879 (1991).

    Google Scholar 

  26. A. Strasser, A.W. Harris, H. von Boehmer, and S. Cory, Positive and negative selection of T cells in T-cell receptor transgenic mice expressing a Bcl-2 transgene. Proc. Natl. Acad. Sci. USA. 91: 1376 (1994).

    Article  PubMed  CAS  Google Scholar 

  27. K. Lundberg and K. Shortman, Small cortical thymocytes are subject to positive selection. J. Exp. Med. 179: 1475 (1994).

    Article  PubMed  CAS  Google Scholar 

  28. W. Tao, S.J. Teh, I. Melhado, F. Jirik, S.J. Korsmeyer, and H.S. Teh, The T cell receptor repertoire of CD4–8+ thymocytes is altered by overexpression of the bcl-2 protooncogene in the thymus. J. Exp. Med. 179: 145 (1994).

    Article  PubMed  CAS  Google Scholar 

  29. J. Milbrandt, Nerve growth factor induces a gene homologous to the glucocorcoid receptor gene. Neuron. 1: 183 (1988).

    Article  PubMed  CAS  Google Scholar 

  30. T.G. Hazel, D. Nathans, and L.F. Lau, A gene inducible by serum growth factors encodes a member of the steroid and thyroid hormone receptor superfamily. Proc. Natl. Acad. Sci. USA. 85: 8444 (1988).

    Article  PubMed  CAS  Google Scholar 

  31. G.T. Williams and L.F. Lau, Activation of the inducible orphan receptor gene Nur77 by serum growth factors: dissociation of immediate-early and delayed-early responses. Mol. Cell Biol. 13: 6124 (1993).

    PubMed  CAS  Google Scholar 

  32. S.R. Abu-Shakra, A.J. Cole, and D.B. Drachman, Nerve stimulation and denervation induce differential patterns of immediate early gene mRNA expression in skeletal muscle. Brain Res. Mol. Brain Res. 18: 216 (1993).

    Article  PubMed  CAS  Google Scholar 

  33. S.W. Law, O.M. Conneely, F.J. DeMayo, and B.W. O’Malley, Identification of a new brain-specific transcription factor, NurRl. Mol. Endocrinol. 6: 2129 (1992).

    Article  PubMed  CAS  Google Scholar 

  34. I.J. Davis, T.G. Hazel, R.H. Chen, J. Blenis, and L.F. Lau, Functional domains and phosphorylation of the orphan receptor Nur77. Mol. Endocrinol. 7: 953 (1993).

    Article  PubMed  CAS  Google Scholar 

  35. J.K. Yoon and L.F. Lau, Transcriptional activation of the inducible nuclear receptor gene Nur77 by nerve growth factor and membrane depolarization in PC 12 cells. J. Biol. Chem. 268: 9148 (1993).

    PubMed  CAS  Google Scholar 

  36. T.E. Wilson, T.J. Fahrner, M. Johnston, and J. Milbrandt, Identification of the DNA binding site for NGFI-B by genetic selection in yeast. Science. 252: 1296 (1991).

    Article  PubMed  CAS  Google Scholar 

  37. T.E. Wilson, R.E. Paulsen, K.A. Padgett, and J. Milbrandt, Participation of non-zinc finger residues in DNA binding by two nuclear orphan receptors. Science. 256: 107 (1992).

    Article  PubMed  CAS  Google Scholar 

  38. Z-G. Liu, S.W. Smith, K.A. McLaughlin, L.M. Schwartz, and B.A. Osborne, Apoptotic signals delivered through the T-cell receptor of a T-cell hybrid require the immediate-early gene Nur77. Nature. 367: 281 (1994).

    Article  PubMed  CAS  Google Scholar 

  39. J.D. Woronica, B. Cainan, V. Ngo, and A. Winoto, Requirement for the orphan steroid receptor Nur77 in apoptosis of T-cell hybridomas. Nature. 367: 277 (1994).

    Article  Google Scholar 

  40. T. Okabe, R. Takayanagi, K. Imasaki, H. Masafumi, H. Nawata, and T. Watanabe, cDNA cloning of a NGF1-B/Nur77-related transcription factor from an apoptotic human T cell line. J. Immunol. 154: 3871 (1995).

    PubMed  CAS  Google Scholar 

  41. Y. Yang, M. Mercep, C.F. Ware, and J.D. Ashwell, Fas and activation-induced Fas ligand mediate apoptosis of T cell hybridomas: inhibition of Fas ligand expression by retinoic acid and glucocorticoids. J. Exp. Med. 181: 1673 (1995).

    Article  PubMed  CAS  Google Scholar 

  42. M.S. Vacchio, V. Papadopoulos, J.D. Ashwell, Steroid production in the thymus: implications for thymocyte selection. J. Exp. Med. 179: 1835 (1994).

    Article  PubMed  CAS  Google Scholar 

  43. S.L. Lee, R.L. Wesselschmidt, G.P. Linette, O. Kanagawa, J.H. Russell, and J. Milbrandt, Unimpared thymic and peripheral T cell death in mice lacking the nuclear receptor NGFI-B Nur77. Science. 269: 532 (1995).

    Article  PubMed  CAS  Google Scholar 

  44. J. Kaye, M.-L. Hsu, M.-E. Sauron, S.C. Jameson, N.R.J. Gascoigne, and S.M. Hedrick, Selective development of CD4+ T cells in transgenic mice expressing a class II MHC-restricted antigen receptor. Nature. 341: 746 (1989).

    Article  PubMed  CAS  Google Scholar 

  45. J. Kaye and S.M. Hedrick, Analysis of specificity for antigen, Mls, and allogeneic MHC by transfer of T-cell receptor a-and 3-chain genes. Nature. 336: 580 (1988).

    Article  PubMed  CAS  Google Scholar 

  46. P. Kisielow, H. Bluethmann, U.D. Staerz„ M. Steinmetz, and H. von Boehmer, Tolerance in T-cell receptor transgenic mice involves deletion of immature CD4+8+ thymocytes. Nature. 333: 742 (1988).

    Article  PubMed  CAS  Google Scholar 

  47. P. Kisielow, H.S. Teh, H. Bluethmann, and H. von Boehmer, Positive selection of antigen-specific T cells in thymus by restricting MHC molecules. Nature. 335: 730 (1988).

    Article  PubMed  CAS  Google Scholar 

  48. H. von Boehmer, Developmental biology of T cells in T cell receptor transgenic mice. Annu. Rev. Immunol. 8: 531 (1990).

    Article  PubMed  CAS  Google Scholar 

  49. H-S. Teh, H. Kishi, B. Scott, and H. von Boehmer, Deletion of autospecific T cells in T cell receptor (TCR) transgenic mice spares cells with normal TCR levels and low levels of CD8 molecules. J. Exp. Med. 169: 795 (1989).

    Article  PubMed  CAS  Google Scholar 

  50. T. Zhou, H. Bluethmann, J. Eldridge, K. Berry, and J.D. Mountz, Origin of CD4–CD8-B220+ T cells in MRL-1pr/lpr mice. Clues from a T cell receptor (3 transgenic mouse. J. Immunol. 150: 3651 (1993).

    PubMed  CAS  Google Scholar 

  51. M.C. Kiefer, M.J. Brauer, V.C. Powers, J.J. Wu, S.R. Umansky, L.D. Tomei, and P.J. Barr, Modulation of apoptosis by the widely distributed bc1–2 homologue Bak. Nature. 374: 736 (1995).

    Article  PubMed  CAS  Google Scholar 

  52. E. Yang, J. Zha, J. Jockel, L.H. Boise, C.B Thompson, and S.J. Korsmeyer, Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell. 80: 285 (1995).

    Article  PubMed  CAS  Google Scholar 

  53. X.M. Yin, Z.N. Oltval, and S.J. Korsmeyer, BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature. 369: 321 (1994).

    Article  PubMed  CAS  Google Scholar 

  54. Z.N. Oltvai, C.L. Milliman, and S.J. Korsmeyer, Bc1–2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell. 74: 609 (1993).

    Article  PubMed  CAS  Google Scholar 

  55. S.T. Ju, D.J. Panka, H. Cui, R. Ettinger, M. el-Khatib, D.H. Sherr, B.Z. Stanger, and A. Marshak-Rothstein, Fas (CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature. 373: 444 (1995).

    Article  PubMed  CAS  Google Scholar 

  56. T. Brunner, R.J. Mogil, D. LaFace, N.J. Yoo, A. Mahboubi, F. Echeverri, S.J. Martin, W.R. Force, D.H. Lynch, and C.F. Ware, Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature. 373: 441 (1995).

    Article  PubMed  CAS  Google Scholar 

  57. J. Dhein, H. Walczak, C. Baumler, K.M. Debatin, and P.H. Krammer, Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature. 373: 438 (1995).

    Article  PubMed  CAS  Google Scholar 

  58. M.R. Alderson, T.W. Tough, T. Davis-Smith, S. Braddy, B. Falk, K.A. Schooley, R.G. Goodwin, C.A. Smith, F. Ramsdell, and D.H. Lynch, Fas ligand mediates activation-induced cell death in human T lymphocytes. J. Exp. Med. 181: 71 (1995).

    Article  Google Scholar 

  59. D. Kabelitz, T. Pohl, and K. Pechhold, Activation-induced cell death (apoptosis) of mature peripheral T lymphocytes. Immunol. Today. 14: 339 (1993).

    Article  Google Scholar 

  60. D.R. Green and D.W. Scott, Activation-induced apoptosis in lymphocytes. Curr. Opin. Immunol. 6: 476 (1994).

    Article  PubMed  CAS  Google Scholar 

  61. W.F. Davidson, C. Calkins, A. Hugins, T. Giese, and K.L. Holmes, Cytokine secretion by C3H-lpr and -gld T cells. Hypersecretion of IFN-y and tumor necrosis factor-a by stimulated CD4+ T cells. J. Immunol. 146: 4138 (1991).

    PubMed  CAS  Google Scholar 

  62. J.D. Mountz, T.J. Baker, D.R. Borcherding, H. Bluethmann, T. Zhou, and C.K. Edwards, III, Increased susceptability of fas mutant MRL-1pr/lpr mice to staphylococcal enterotoxin B-induced septic shock. J. Immunol. 155: 4829 (1995).

    PubMed  CAS  Google Scholar 

  63. T. Zhou, J.D. Mountz, C.K. Edwards, III, K. Berry, and H. Bluethmann, Defective maintenance of T cell tolerance to a superantigen in MRL-1pr/Ipr. J. Exp. Med. 176: 1063 (1992).

    Article  CAS  Google Scholar 

  64. J.D. Mountz, T. Zhou, R.E. Long, H. Bluethmann, W.J. Koopman, and C.K. Edwards, III, T cell influence on superantigen-induced arthritis in MRL-1pr/lpr mice. Arthritis Rheum. 37: 113 (1994).

    Article  PubMed  CAS  Google Scholar 

  65. L. Zheng, G. Fisher, R.E. Miller, J. Peschon, D. Lynch, and M.J. Lenardo, Induction of apoptosis in mature T cells by tumour necrosis factor. Nature. 377: 348 (1995).

    Article  PubMed  CAS  Google Scholar 

  66. L.A. Tartaglia, T.M. Ayres, G.H. Wong, and D.V. Goeddel, A novel domain within the 55 kd TNF receptor signals cell death. Cell. 74: 845 (1993).

    Article  PubMed  CAS  Google Scholar 

  67. N. Itoh, and S. Nagata, A novel protein domain required for apoptosis, Mutational analysis of human Fas antigen. J. Biol. Chem. 268: 10932 (1993).

    PubMed  CAS  Google Scholar 

  68. B.Z. Stanger, P. Leder, T.H. Lee, E. Kim, and B. Seed, RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell. 81: 513 (1995).

    Article  PubMed  CAS  Google Scholar 

  69. A.M. Chinnaiyan, K. O’Rourke, M. Tewari, and V.M. Dixit, FADD, a novel death domain-containing protein, interacts with /he death domain of Fas and initiates apoptosis. Cell. 81: 505 (1995).

    Article  PubMed  CAS  Google Scholar 

  70. M.P. Boldin, E.E. Varf6lomeev, Z. Pancer, I.L. Mett, J.H. Camonis, and D.Wallach. A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. J. Biol. Chem. 270: 7795 (1995).

    Article  PubMed  CAS  Google Scholar 

  71. M.P. Boldin, I.L. Mett, E.E. Varfolomeev, I. Chumakov, Y. Shemer-Avni, J.H. Camonis, and D. Wallach, Self-association of the “death domains” of the p55 tumor necrosis factor (TNF) receptor and Fas/APOI prompts signaling for TNF and Fas/APO1 effects. J. Biol. Chem. 270: 387 (1995).

    Article  PubMed  CAS  Google Scholar 

  72. H. Hsu, J. Xiong, and D.V. Goeddel, The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell. 81: 495 (1995).

    Article  PubMed  CAS  Google Scholar 

  73. G.H.W. Wong, and D. Goeddel, Fas antigen and p55 TNF receptor signal apoptosis through distinct pathways. J. Immunol. 152: 1751, (1994).

    Google Scholar 

  74. K. Schulze-Osthoff, P.H. Krammer, and W. Droge, Divergent signalling via APO-1/Fas and the TNF receptor, two homologous molecules involved in physiological cell death. EMBO J. 13: 4587 (1994).

    PubMed  CAS  Google Scholar 

  75. L.A. Tartaglia, M. Rothe, Y-F. Hu, and D.V. Goeddel, Tumor necrosis factor’s cytotoxic activity is signaled by the p55 TNF receptor. Cell 73: 213 (1993).

    Article  PubMed  CAS  Google Scholar 

  76. A. Sarin, M. Conan-Cibotti, and P.A. Henkart, Cytotoxic effect of TNF and lymphotoxin on T lymphoblasts. J. Immunol. 155: 3716 (1995).

    PubMed  CAS  Google Scholar 

  77. R.A. Heller, K. Song, and N. Fan. Cytotoxicity by tumor necrosis factor is mediated by both p55 and p70 receptors. Cell 73: 213 (1993).

    Article  Google Scholar 

  78. K.C.F. Sheehan, J.K. Pinckard, C.D. Arthur, L.P. Dehner, D.V. Goeddel, and R.D. Schreiber, Monoclonal antibodies specific for murine p55 and p75 tumor necrosis factor receptors: identification of a novel in vivo role for p75. J. Exp. Med. 181: 607 (1995).

    Article  PubMed  CAS  Google Scholar 

  79. J. Rothe, W. Lesslauer, H. Loetscher, Y. Lang, P. Koebel, F. Kontgen, A. Althage, R. Zinkernagel, M. Steinmetz, and H. Bluethmann, Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature (Lond) 364: 798 (1993).

    Article  CAS  Google Scholar 

  80. K. Pfeffer, T. Matsuyama, T.M. Kündig, A. Wakeham, K. Kishihara, A. Shahinian, K. Wiegmann, P.S. Ohashi, M. Krönke, and T.W. Mak, Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 73: 457 (1993).

    Article  PubMed  CAS  Google Scholar 

  81. S.L. Erickson, F.J. de Sauvage, K. Kikly, K. Carver-Moore, S. Pitts-Meek, N. Gillett, K.C.F. Sheehan, R.D. Schreiber, D.V. Goeddel, and M.W. Moore, Decreased sensitivity to tumour-necrosis factor but normal T-cell development in TNF receptor-2-deficient mice. Nature 372: 560 (1994).

    Article  PubMed  CAS  Google Scholar 

  82. P. Vassalli, The pathophysiology of tumor necrosis factors. Annu. Rev. Immunol. 10: 411 (1992).

    Article  PubMed  CAS  Google Scholar 

  83. C.O. Jacob and H.O. McDevitt, Tumour necrosis factor-alpha in murine autoimmune `lupus’ nephritis. Nature 331: 356 (1988).

    Article  Google Scholar 

  84. X.D. Yang, R. Tisch, S.M. Singer, Z.A. Cao, R.S. Liblau, R.D. Schreiber, H.O. McDevitt, Effect of tumor necrosis factor alpha on insulin-dependent diabetes mellitus in NOD mice. I. The early development of autoimmunity and the diabetogenic process. J. Exp. Med. 180: 995 (1994).

    Article  PubMed  CAS  Google Scholar 

  85. S. Gerder, D.E. Picarella, P.S. Linsley, R.A. Flavell, Costimulator B7–1 confers antigen-presenting-cell function to parenchymal tissue and in conjunction with tumor necrosis factor alpha leads to autoimmunity in transgenic mice. Proc. Natl. Acad. Sci., USA 91: 5138 (1994).

    Article  Google Scholar 

  86. A. Schattner, Lymphokines in autoimmunity-a critical review. Clin. Immunol. Immunopathol. 70: 177 (1994).

    Article  PubMed  CAS  Google Scholar 

  87. H. Ishida, T. Muchamuel, S. Sakaguchi, S. Andrade, S. Menon, and M. Howard, Continuous administration of anti-interleukin 10 antibodies delays onset of autoimmunity in NZB/W F1 mice. J. Exp. Med. 179: 305 (1994).

    Article  PubMed  CAS  Google Scholar 

  88. C.O. Jacob, Studies on the role of tumor necrosis factor in mutine and human autoimmunity. J. Autoimmun. 5: 133 (1992).

    Article  PubMed  Google Scholar 

  89. P.W. Gray, K. Barrett, D. Chantry, M. Turner, and M. Feldmann, Cloning of human tumor necrosis factor (TNF) receptor cDNA and expression of recombinant soluble TNF-binding protein. Proc. Natl. Acad. Sci., USA 87: 7380 (1990).

    Article  CAS  Google Scholar 

  90. F.M. Brennan, D.L. Gibbons, A.P. Cope, P. Katsikis, R.N. Maini, M. Feldmann, TNF inhibitors are produced spontaneously by rheumatoid and osteoarthritic synovial joint cell cultures: evidence of feedback control of TNF action. Scand. J. Immunol. 42: 158, (1995).

    Article  PubMed  CAS  Google Scholar 

  91. A. Ashkenazi, S.A. Marsters, D.J. Capon, S.M. Chamow, I.S. Figari, D. Pennica, D.V. Goeddel, M.A. Palladino, and D.H. Smith, Protection against endotoxic shock by a tumor necrosis factor receptor immunoadhesin. Proc. Natl. Acad. Sci., USA 88: 10535, (1991).

    Article  CAS  Google Scholar 

  92. M. Feldmann, F.M. Brennan, R.O. Williams, A.P. Cope, D.L. Gibbons, P.D. Katsikis, R.N. Maini, Evaluation of the role of cytokines in autoimmune disease: the importance of TNF alpha in rheumatoid arthritis. Prog. Growth Factor Res. 4: 247, (1992).

    Article  PubMed  CAS  Google Scholar 

  93. C.O. Jacob, Tumor necrosis factor alpha in autoimmunity: pretty girl or old witch? Immunol Today 13: 122 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mountz, J.D. et al. (1996). Autoimmunity Due to Defective NUR77, Fas, and TNF-RI Apoptosis. In: Gupta, S., Cohen, J.J. (eds) Mechanisms of Lymphocyte Activation and Immune Regulation VI. Advances in Experimental Medicine and Biology, vol 406. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0274-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0274-0_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0276-4

  • Online ISBN: 978-1-4899-0274-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics