Granzyme B-Induced Apoptosis

  • Arnold H. Greenberg
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 406)

Abstract

In the last several years the major mechanisms by which both cytotoxic T lymphocytes (CTL) and natural killer (NK) cells mediate cell death and apoptosis have been identified. Cytotoxic lymphocytes of both types induce apoptosis through granule-or Fas-dependent pathway 1-4and perhaps TNF-α5. The granule exocytosis mechanism of CTL killing’ appears to be primarily responsible for resistance to viruses and can mediate lysis of a wide variety of tumors and allogeneic cells6,7. The mechanism by which granulated cytotoxic cells lyse target cells requires their transient but intimate contact with the target1,8. Cytotoxic lymphocytes contain cytoplasmic granules that rapidly reorient to the area of target cell contact through a kinesin-based motor mechanism, then fuse with the plasma membrane and release their contents into the intercellular space formed between the lymphocyte and target cell1,9,10. The target cell then undergoes disintegration with the nucleus of the target cell rapidly breaking down in a manner similar to that seen in programmed cell death or apoptosis in which the nucleus collapses with severe chromatin condensation and oligonucleosomal-sized DNA fragments are released during DNA degradation1. Plasma membrane damage is also observed and is accompanied by the appearance of C9 complement-like pores and calcium permeability’. Morphologically the target cells exhibit the features of apoptosis with typical nuclear changes, as well as necrosis with evidence of plasma membrane damage8,10,11

Keywords

Human Immunodeficiency Virus Type Cytotoxic Lymphocyte Cdc2 Kinase Mast Cell Tumor Cdc2 Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.A. Henkart, Mechanism of lymphocyte-mediated cytotoxicity. Annu. Rev. Immunol. 3: 31 (1985).PubMedCrossRefGoogle Scholar
  2. 2.
    E. Rouvier, M.F. Luciani, and P. Golstein, Fas involvement in Ca(2+)-independent T cell-mediated cytotoxicity. J. Exp. Med. 177: 195 (1993).PubMedCrossRefGoogle Scholar
  3. 3.
    D. Kaegi, F. Vignaux, B. Ledermann, K. Buerki, V. Depraetere, S. Nagata, H. Hengartner, and P. Golstein, Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science 265: 528 (1994).CrossRefGoogle Scholar
  4. 4.
    B. Lowin, M. Hahne, C. Mattmann, and J. Tschopp, Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature 370: 650 (1994).PubMedCrossRefGoogle Scholar
  5. 5.
    L.X. Zheng, G. Fisher, R. E. Miller, J. Peschon, D. H. Lynch, and M. J. Lenardo, Induction of apoptosis in mature T cells by tumour necrosis factor. Nature 377: 348 (1995).PubMedCrossRefGoogle Scholar
  6. 6.
    D. Kaegi, B. Ledermann, K. Buerki, P. Seiler, B. Odermatt, K. J. Olsen, E. R. Podack, R. M. Zinkernagel, and H. Hengartner, Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369: 31 (1994).CrossRefGoogle Scholar
  7. 7.
    C.M. Walsh, M. Matloubian, Liu, C.C. Ueda, C.G. Kurahara, J.L. Christensen, M.T.F. Huang, J.D.E. Young, R. Ahmed, and W.R. Clark, Immune function in mice lacking the perforin gene. Proceedings. of. the. National. Academy. of. Sciences. of. the. United. States. of America. 91: 10854 (1994).PubMedCrossRefGoogle Scholar
  8. 8.
    A.H. Greenberg, and D.W. Litchfield. Granzymes and apoptosis: Targeting the cell cycle. In Pathways for cytolysis. G.M. Griffiths and J. Tschopp, editors. Current Topics in Microbiology and Immunology. 198:95 (1995).Google Scholar
  9. 9.
    G.M. Griffiths, and Y. Argon, Structure and biogenesis of lytic granules. In Pathways for cytolysis. G.M. Griffiths and J. Tschopp, editors. Current Topics in Microbiology and Immunology 198:39 (1995).CrossRefGoogle Scholar
  10. 10.
    P.A. Henkart, M.S. Williams, and H. Nakajima, Degranulating cytotoxic lymphocytes inflict multiple damage pathways on target cells. In Pathways for cytolysis. G.M. Griffiths and J. Tschopp, editors. Current Topics in Microbiology and Immunology 198:75 (1995).Google Scholar
  11. 11.
    B. Lowin, M.C. Peitsch, and J. Tschopp, Perforin and Granzymes: Crucial effector moleucles in cytolytic T lymphocyte and ntural killer cell-mediated cytotoxicity. In Pathways for cytolysis. G.M. Griffiths and J. Tschopp, editors. Current Topics in Microbiology and Immunology 198:1 (1995).Google Scholar
  12. 12.
    M.J. Smyth, and J. A. Trapani, Granzymes: Exogenous proteinases that induce target cell apoptosis. Immunology Today 16: 202 (1995).PubMedCrossRefGoogle Scholar
  13. 13.
    J.W. Heusel, R.L. Wesselschmidt, S. Shresta, J.H. Russell, and T. J. Ley, Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell 76: 977 (1994).PubMedCrossRefGoogle Scholar
  14. 14.
    C.0 Liu, C.M. Walsh, and J.D.E. Young, Perforin: Structure and function. Immunology Today 16: 194 (1995).PubMedCrossRefGoogle Scholar
  15. 15.
    L. Shi, R.P.Kraut, R. Aebersold, and A.H. Greenberg, A natural killer cell granule protein that induces DNA fragmentation and apoptosis. J. Exp. Med. 175: 553 (1992).PubMedCrossRefGoogle Scholar
  16. 16.
    L. Shi, C.M. Kam, J.C. Powers, R. Aebersold, and A.H. Greenberg, Purification of three cytotoxic lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target cell interactions. J. Exp. Med. 176: 1521 (1992).PubMedCrossRefGoogle Scholar
  17. 17.
    D. Masson, and J. Tschopp, A family of serine esterases in lytic granules of cytolytic T lymphoyctes. Cell 49: 679 (1987).PubMedCrossRefGoogle Scholar
  18. 18.
    M. Poe, J.T. Blake, D.A. Boulton, M. Gammon, N.H. Sigal, J.K. Wu, and H.J. Zweerink, Human cytotoxic lymphocyte granzyme B. Its purification from granules and the characterization of substrate and inhibitor specificity. J. Biol. Chem. 266: 98 (1991).PubMedGoogle Scholar
  19. 19.
    S. Odake, C.M. Kam, L. Narasimhan, M. Poe, J.T. Blake, O. Krahenbuhl, J. Tschopp, and J.C. Powers, Human and murine cytotoxic T lymphocyte serine proteases: subsite mapping with peptide thioester substrates and inhibition of enzyme activity and cytolysis by isocoumarins. Biochemistry 30: 2217 (1991).PubMedCrossRefGoogle Scholar
  20. 20.
    H. Nakajima, H.L. Park, and P.A. Henkart, Synergistic roles of granzymes A and B in mediating target cell death by rat basophilic leukemia mast cell tumors also expressing cytolysin/perforin. J. Exp. Med. 181: 1037 (1995).PubMedCrossRefGoogle Scholar
  21. 21.
    J.W. Shiver, and P. A. Henkart, A noncytotoxic mast cell tumor line exhibits potent IgE-dependent cytotoxicity after transfection with the cytolysin/perforin gene. Cell 64: 1175 (1991).PubMedCrossRefGoogle Scholar
  22. 22.
    J.W. Shiver, L. Su, and P.A. Henkart, Cytotoxicity with target DNA breakdown by rat basophilic leukemia cells expressing both cytolysin and granzyme A. Cell 71:315 (1992).Google Scholar
  23. 23.
    S. Shresta, D.M. Maclvor, J.W. Heusel, J.H. Russell, and T.J. Ley, Natural killer and lymphokine-activated killer cells require granzyme B for the rapid induction of apoptosis in susceptible target cells. Proceedings. of. the. National. Academy. of Sciences. of the. United. States. of America. 92: 5679 (1995).PubMedCrossRefGoogle Scholar
  24. 24.
    K. Ebnet, M. Hausmann, F. Lehmann-Grube, A. Muellbacher, M. Kopf, M. Lamers, and M.M. Simon, Granzyme A-deficient mice retain potent cell-mediated cytotoxicity. EMBO Journal. 14: 4230 (1995).PubMedGoogle Scholar
  25. 25.
    R.E. Ellis, J.Y. Yuan, and H.R. Horvitz, Mechanisms and functions of cell death. Annu. Rev. Cell Biol. 7: 663 (1991).PubMedCrossRefGoogle Scholar
  26. M.O. Hengartner, and H.R. Horvitz, Programmed cell death in Caenorhabditis elegans. Current. Opinion. in Genetics and. Development 4:581 (1994).Google Scholar
  27. 27.
    M.O. Hengartner, and H.R. Horvitz, C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bc1–2. Cell 76: 665 (1994).PubMedCrossRefGoogle Scholar
  28. 28.
    J.Y. Yuan, and H.R. Horvitz, The Caenorhabditis elegans genes ced-3 and ced-4 act cell autonomously to cause programmed cell death. Dev. Biol. 138: 33 (1990).PubMedCrossRefGoogle Scholar
  29. 29.
    J. Yuan, S. Shaham, S. Ledoux, H.M. Ellis, and H.R. Horvitz, The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-IBeta-converting enzyme. Cell 75: 641 (1993).PubMedCrossRefGoogle Scholar
  30. 30.
    C. Norbury, and P. Nurse, Animal cell cycles and their control. Annu. Rev. Biochem. 61: 441 (1992).PubMedCrossRefGoogle Scholar
  31. 31.
    D.O. Morgan, Principles of CDK regulation. Nature 374: 131 (1995).PubMedCrossRefGoogle Scholar
  32. 32.
    W. Krek, and E.A. Nigg, Mutations of p34cdc2 phosphorylation sites induce premature mitotic events in HeLa cells: evidence for a double block to p34cdc2 kinase activation in vertebrates. EMBO J. 10: 3331 (1991).PubMedGoogle Scholar
  33. 33.
    R. Heald, M. McLoughlin, and F. McKeon, Human weel maintains mitotic timing by protecting the nucleus from cytoplasmically activated Cdc2 kinase. Cell 74: 463 (1993).PubMedCrossRefGoogle Scholar
  34. 34.
    L. Shi, W.K. Nishioka, J. Th’ng, E.M. Bradbury, D.W. Litchfield, and A.H. Greenberg, Premature p34cdc2 activation required for apoptosis. Science 263: 1143 (1994).PubMedCrossRefGoogle Scholar
  35. 35.
    G. Chen, L. Shi, D.W. Litchfield, and A.H. Greenberg, Rescue from granzyme B-induced apoptosis by Weel kinase. Journal. of Experimental. Medicine 181: 2295 (1995).PubMedCrossRefGoogle Scholar
  36. 36.
    A.J. Darmon, D.W. Nicholson, and R.C. Bleackley, Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B. Nature 377: 446 (1995).PubMedCrossRefGoogle Scholar
  37. 37.
    N. Khalil, S.C. Battistuzzi, R.P. Kraut, L.C. Schwarz, and A.H. Greenberg, Growth factor-initiated proliferation of mouse embryonic fibroblasts induces cytotoxicity by natural killer cells and by a non-cytolysin cytotoxin in natural killer granules. J. Immunol. 145: 1286 (1990).PubMedGoogle Scholar
  38. 38.
    W.K. Nishioka, and R.M. Welsh, Susceptibility to cytotoxic T lymphocyte-induced apoptosis is a function of the proliferative status of the target. J. Exp. Med. 179: 769 (1994).PubMedCrossRefGoogle Scholar
  39. 39.
    L.L. Parker, and H. Piwnica Worms, Inactivation of the p34cdc2-cyclin B complex by the human WEE1 tyrosine kinase. Science 257: 1955 (1992).PubMedCrossRefGoogle Scholar
  40. 40.
    C.H. McGowan, and P. Russell, Cell cycle regulation of human WEE1. EMBO Journal. 14: 2166 (1995).PubMedGoogle Scholar
  41. 41.
    C.J. Li, D.J. Friedman, C. Wang, V. Metelev, and A.B. Pardee, Induction of apoptosis in uninfected lymphocytes by HIV-1 Tat protein. Science 268: 429 (1995).PubMedCrossRefGoogle Scholar
  42. 42.
    J.L. He, S. Choe, R. Walker, P. Di Marzio, D.O. Morgan, and N.R. Landau, Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. Journal. of. Virology 69: 6705 (1995).PubMedGoogle Scholar
  43. 43.
    F. Re, D. Braaten, E.K. Franke, and J. Luban, Human immunodeficiency virus type I Vpr arrests the cell cycle in G2 by inhibiting the activation of p34cdc2-cyclin B. Journal. of. Virology 69: 6859 (1995).PubMedGoogle Scholar
  44. 44.
    R. Fotedar, J. Flatt, S. Gupta, R.L. Margolis, P. Fitzgerald, H. Messier, and A. Fotedar, Activation-induced T-cell death is cell cycle dependent and regulated by cyclin B. Molecular. and. Cellular. Biology. 15: 932 (1995).PubMedGoogle Scholar
  45. 45.
    N. Watanabe, M. Broome, and T. Hunter, Regulation of the human WEEI Hu CDK tyrosine 15-kinase during the cell cycle. EMBO Journal. 14: 1878 (1995).PubMedGoogle Scholar
  46. 46.
    L. Wu, and P. Russell, Niml kinase promotes mitosis by inactivating Weel tyrosine kinase. Nature 363: 738 (1993).PubMedCrossRefGoogle Scholar
  47. 47.
    J.M. Lahti, J. Xiang, L.S. Heath, D. Campana, and V.J. Kidd, PITSLRE protein kinase activity is associated with apoptosis. Molecular. and. Cellular. Biology. 15:1 (1995).Google Scholar
  48. 48.
    S.J. Martin, A.J. McGahon, W.K. Nishioka, D. La Face, X. Guo, J. Th’ng, E.M. Bradbury, and D.R. Green, p34cdc2 and apoptosis. Science 269: 106 (1995).PubMedCrossRefGoogle Scholar
  49. 49.
    A.H. Greenberg, and D.W. Litchfield, p34cdc2 and apoptosis. Response. Science 269: 107 (1995).PubMedCrossRefGoogle Scholar
  50. 50.
    R.S. Freeman, S. Estus, and E.M. Johnson,Jr, Analysis of cell cycle-related gene expression in postmitotic neurons: Selective induction of cyclin D1 during programmed cell death. Neuron 12: 343 (1994).PubMedCrossRefGoogle Scholar
  51. 51.
    M. Miura, H. Zhu, R. Rotello, E.A. Hartwieg, and J. Yuan, Induction of apoptosis in fibroblasts by IL-1Beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-. Cell 75: 653 (1993).PubMedCrossRefGoogle Scholar
  52. 52.
    L. Wang, M. Miura, L. Bergeron, H. Zhu, and J. Yuan, Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death. Cell 78: 739 (1994).PubMedCrossRefGoogle Scholar
  53. 53.
    V. Gagliardini, P.A. Fernandez, R.K. Lee, H.C. Drexler, R.J. Rotello, M.C. Fishman, and J. Yuan, Prevention of vertebrate neuronal death by the crmA gene [see comments]. Science 263: 826 (1994).PubMedCrossRefGoogle Scholar
  54. 54.
    S.J. Martin, and D.R. Green, Protease activation during apoptosis: Death by a thousand cuts?. Cell 82: 349 (1995).PubMedCrossRefGoogle Scholar
  55. 55.
    S. Kumar, M. Kinoshita, M. Noda, N.G. Copeland, and N.A. Jenkins, Induction of apoptosis by the mouse Nedd2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell death gene ced-3 and the mammalian IL-1Beta-converting enzyme. Genes and. Development 8: 1613 (1994).PubMedCrossRefGoogle Scholar
  56. 56.
    T. Fernandes-Alnemri, G. Litwack, and E.S. Alnemri, CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1Beta-convert ng enzyme. Journal. of. Biological. Chemistry. 269: 30761 (1994).PubMedGoogle Scholar
  57. 57.
    C. Faucheu, A. Diu, A.W.E. Chan, A.M. Blanchet, C. Miossec, F. Herve, V. Collard-Dutilleul, Y. Gu, R.A. Aldape, J.A. Lippke, C. Rocher, M.S.S. Su, D.J. Livingston, T. Hercend, and J.L. Lalanne, A novel human protease similar to the interleukin-1 Beta converting enzyme induces apoptosis in transfected cells. EMBO Journal. 14: 1914 (1995).PubMedGoogle Scholar
  58. 58.
    N.A. Munday, J.P. Vaillancourt, A. Ali, F.J. Casano, D.K. Miller, S.M. Molineaux, T.T. Yamin, V.L. Yu, and D.W. Nicholson, Molecular cloning and pro-apoptotic activity of ICErelII and ICErelIII, members of the ICE/CED-3 family of cysteine proteases. J. Biol. Chem. 270: 15870 (1995).PubMedCrossRefGoogle Scholar
  59. 59.
    T. Fernandes Alnemri, G. Litwack, and E.S. Alnemri, Mch2, a new member of the apoptotic Ced-3/Ice cysteine protease gene family. Cancer Res. 55: 2737 (1995).PubMedGoogle Scholar
  60. 60.
    N.A. Thornberry, H.G. Bull, J.R. Calaycay, K.T. Chapman, A.D. Howard, M.J. Kostura, D.K. Miller, S.M. Molineaux, J.R. Weidner, J. Aunins, and et al, A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356: 768 (1992).PubMedCrossRefGoogle Scholar
  61. 61.
    D.K. Miller, J.M. Ayala, L.A. Egger, S.M. Raju, T.T. Yamin, G.J. Ding, E.P. Gaffney, A.D. Howard, O.C. Palyha, A.M. Rolando, and et al, Purification and characterization of active human interleukin-1 beta-converting enzyme from THP.1 monocytic cells. J. Biol. Chem. 268: 18062 (1993).PubMedGoogle Scholar
  62. 62.
    A.J. Darmon, N. Ehrman, A. Caputo, J. Fujinaga, and R.C. Bleackley, The cytotoxic T cell proteinase granzyme B does not activate interleukin-IBeta-converting enzyme. Journal. of. Biological. Chemistry. 269: 32043 (1994).PubMedGoogle Scholar
  63. 63.
    D.W. Nicholson, A. Ali, N.A. Thornberry, J.P. Vaillancourt, C.K. Ding, M. Gallant, Y. Gareau, P.R. Griffin, M. Labelle, Y.A. Lazebnik, N.A. Munday, S.M. Raju, M.E. Smulson, T.T. Yamin, V. L. Yu, and D.K. Miller, Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376: 37 (1995).PubMedCrossRefGoogle Scholar
  64. 64.
    M. Tewari, L.T. Quan, K. O’Rourke, S. Desnoyers, Z. Zeng, D.R. Beidler, G.G. Poirier, G.S. Salvesen, and V.M. Dixit, Yama/CPP32Beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 63. 81: 801 (1995).CrossRefGoogle Scholar
  65. 65.
    A.J. Darmon, D.W. Nicholson, and R.C. Bleackley, Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B. Nature 377: 446 (1995).PubMedCrossRefGoogle Scholar
  66. 66.
    P. Li, H. Allen, S. Banerjee, S. Franklin, L. Herzog, C. Johnston, J. McDowell, M. Paskind, L. Rodman, J. Salfeld, E. Towne, D. Tracey, S. Wardwell, F. Wei, W. Wong, R. Kamen, and T. Seshadri, Mice deficient in IL-1(3-converting enzyme are defective in production of mature IL-113 and resistant to endotoxic shock. Cell 80: 401 (1995).PubMedCrossRefGoogle Scholar
  67. 67.
    K. Kuida, J.A. Lippke, G. Ku, M.W. Harding, D.J. Livingston, M.S.S. Su, and R.A. Flavell, Altered cytokine export and apoptosis in mice deficient in interleukin-1 Beta converting enzyme. Science 267: 2000 (1995).Google Scholar
  68. 68.
    C.A. Ray, R.A. Black, S.R. Kronheim, T.A. Greenstreet, P.R. Sleath, G.S. Salvesen, and D.J. Pickup, Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-1 beta converting enzyme. Cell 69: 597 (1992).PubMedCrossRefGoogle Scholar
  69. 69.
    N.J. Bump, M. Hackett, M. Hugunin, S. Seshagiri, K. Brady, P. Chen, C. Ferenz, S. Franklin, T. Ghayur, P. Li, P. Licari, J. Mankovich, L.F. Shi, A.H. Greenberg, L.K. Miller, and W.W. Wong, Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35. Science 269: 1885 (1995).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Arnold H. Greenberg
    • 1
  1. 1.Manitoba Institute of Cell BiologyUniveristy of ManitobaWinnipegCanada

Personalised recommendations