Skip to main content

Inducible Resistance to Fas-Mediated Apoptosis in Primary B Lymphocytes

  • Chapter
Mechanisms of Lymphocyte Activation and Immune Regulation VI

Abstract

The regulated initiation of programs leading to cell death is responsible, at least in part, for maintaining homeostasis within the immune system. Two general mechanisms for the production of cytotoxicity in susceptible targets by T effector cells have been described, one involving Ca++ dependent, perforin/granzyme exocytosis, and the other involving Fas antigen (CD95) engagement1. Fas functions in target cells as a receptor that signals for apoptosis, and Fas has been implicated in the process of reducing lymphocyte numbers following acute immune responses, termed activation induced cell death2–8. Although classical CD8+ cytotoxic T lymphocytes have recently been shown to express both types of cytotoxic activity, a distinct class of T cells, with the phenotype of CD4+ Th1 cells, mediates target cell death primarily in a Fas-dependent fashion9–14.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Berke. The CTL’s kiss of death. Cell 81: 9 (1995).

    Article  PubMed  CAS  Google Scholar 

  2. S. Yonehara, A. Ishii, and M. Yonehara. A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J. Exp. Med. 169: 1747 (1989).

    Article  PubMed  CAS  Google Scholar 

  3. B. C. Trauth, C. Klas, A. M. J. Peters, S. Matzku, P. Moller, W. Falk, K.-M. Debatin, and P. H. Krammer. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245: 301. (1989).

    Article  PubMed  CAS  Google Scholar 

  4. C. Watanabe-Fukunaga, I. Brannan, N. G. Copeland, N. A. Jenkins, and S. Nagata. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356: 314. (1992).

    Article  PubMed  CAS  Google Scholar 

  5. S.-T. Ju, D. J. Panka, H. Cui, R. Ettinger, M. El-Khatib, D. H. Sherr, B. Z. Stanger, and A. Marshak-Rothstein. Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373: 444. (1995).

    Article  PubMed  CAS  Google Scholar 

  6. J. Dhein, H. Walczak, C. Baumler, K.-M. Debatin, and P. H. Krammer. Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature 373: 438. (1995).

    Article  PubMed  CAS  Google Scholar 

  7. T. Brunner, R. J. Mogil, D. LaFace, N. J. Yoo, A. Mahboubi, F. Echeverri, S. J. Martin, W. R. Force, D. H. Lynch, C. F. Ware, and D. R. Green. Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature 373: 441. (1995).

    Article  PubMed  CAS  Google Scholar 

  8. S. Nagata, and P. Golstein. The Fas death factor. Science 267: 1449. (1995).

    Article  PubMed  CAS  Google Scholar 

  9. D. Kägi, F. Vignaux, B. Lederemann, K. Bürki, V. Depraetere, S. Nagata, H. Hengartner, and P. Golstein. Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science 265: 528 (1994).

    Article  PubMed  Google Scholar 

  10. B. Lowin, M. Hahne, C. Mattmann, and J. Tschopp. Cytolytic T-cll cytotoxicity is mediated through perforin and Fas lytic pathways. Nature 370: 650 (1994).

    Article  PubMed  CAS  Google Scholar 

  11. E. Rouvier, M.-F. Luciani, and P. Golstein. Fas involvement in Cat+-independent T cell-mediated cytotoxicity. J. Exp. Med. 177: 195 (1993).

    Article  PubMed  CAS  Google Scholar 

  12. T. Stalder, S. Hahn, and P. Erb. Fas antigen is the major target molecule for CD4+ T cell-mediated cytotoxicity. J. Immunol. 152: 1127 (1994).

    PubMed  CAS  Google Scholar 

  13. S.-T. Ju, H. Cui, D. J. Panka, R. Ettinger, and A. Marshak-Rothstein. Participation of target Fas protein in apoptosis pathway induced by CD4+ Thl and CD8+ cytotoxic T cells. Proc. Natl. Acad. Sci. USA 91: 4185 (1994).

    Article  PubMed  CAS  Google Scholar 

  14. S. Hanabuchi, M. Koyanagi, A. Kawasaki, N. Shinohara, A. Matsuzawa, Y. Nishimura, Y. Kobayashi, S. Yonehara, H. Yagita, and K. Okumura. Fas and its ligand in a general mechanism of T-cell-mediated cytotoxicity. Proc. Natl. Acad. Sci. USA 91: 4930 (1994).

    Article  PubMed  CAS  Google Scholar 

  15. P. Erb, D. Grogg, M. Troxler, M. Kennedy, and M. Fluri. CD4+ T cell-mediated killing of MHC class II-positive antigen-presenting cells. I. Characterization of target cell recognition by in vivo or in vitro activated CD4+ killer T cells. J. Immunol. 144: 790 (1990).

    PubMed  CAS  Google Scholar 

  16. L. B. Owen-Schaub, S. Yonehara, W. L. Crump III, and E. A. Grimm. DNA fragmentation and cell death is selectively triggered in activated human lymphocytes by Fas antigen engagement. Cell. Immunol. 140: 197 (1992).

    Article  PubMed  CAS  Google Scholar 

  17. Daniel, P. T., and P. H. Krammer. Activation induces sensitivity toward APO-1 (CD95)-mediated apoptosis in human B cells. J. Immunol. 152: 5624. (1994).

    PubMed  CAS  Google Scholar 

  18. Rothstein, T. L., J. K. M. Wang, D. J. Panka, L. C. Foote, Z. Wang, B. Stanger, H. Cui, S.-T. Ju, and A. Marshak-Rothstein. Protection against Fas-dependent Thl-mediated apoptosis by antigen receptor engagement in B cells. Nature 374: 163 (1995).

    Article  PubMed  CAS  Google Scholar 

  19. K. Kawakami, and D. C. Parker. Antigen and helper T lymphocytes activate B lymphocytes by distinct signaling pathways. Eur. J. Immunol. 23: 77 (1993).

    Article  PubMed  CAS  Google Scholar 

  20. H. Xie, and T. L. Rothstein. Protein kinase C mediates activation of nuclear cAMP response element-binding protein (CREB) in B lymphocytes stimulated through surface Ig. J. Immunol. 154: 1717 (1995).

    PubMed  CAS  Google Scholar 

  21. L. Huo, and T. L. Rothstein. Receptor-specific induction of individual AP-1 components in B lymphocytes. J. Immunol. 154: 3300 (1995).

    PubMed  CAS  Google Scholar 

  22. J. C. Cambier, C. M. Pleiman, and M. R. Clark. Signal transduction by the B cell antigen receptor and its coreceptors. Ann. Rev. Immunol. 12: 457 (1994).

    Article  CAS  Google Scholar 

  23. T. Kato, T. Kokuho, T. Tamura, and H. Nariuchi. Mechanisms of T cell contact-dependent B cell activation. J. Immunol. 152: 2130 (1994).

    PubMed  CAS  Google Scholar 

  24. L. S. Marshall, D. M. Shepherd, J. A. Ledbetter, a. Aruffo, and R. J. Noelle. Signaling events during helper T cell-dependent B cell activation. I. Analysis of the signal transduction pathways triggered by activated helper T cells in resting B cells. J. Immunol. 152: 4816 (1994).

    PubMed  CAS  Google Scholar 

  25. A.-C. Lalmanach-Girard, T. C. Chiles, D. C. Parker, and T. L. Rothstein. T cell-dependent induction of NF-KB in B cells. J. Exp. Med. 177: 1215 (1993).

    Article  PubMed  CAS  Google Scholar 

  26. D. A. Francis, J. G. Karras, X. Ke, R. Sen, and T. L. Rothstein. Induction of the transcription factors NF-KB, AP-1 and NF-AT during B cell stimulation through the CD40 receptor. Intl. Immunol. 7: 151 (1995).

    Article  CAS  Google Scholar 

  27. J. J. Mond, N. Feuerstein, F. D. Finkelman, F. Huang, K.-P. Huang, and G. Dennis. B-lymphocyte activation mediated by anti-immunoglobulin antibody in the absence of protein kinase C. Proc. Natl. Acad. Sci. USA 84: 8588 (1987).

    Article  PubMed  CAS  Google Scholar 

  28. J. Liu, T. C. Chiles, R. Sen, and T. L. Rothstein. Inducible nuclear expression of NF-KB in primary B cells stimulated through the surface Ig receptor. J. Immunol. 146: 1685 (1991).

    PubMed  CAS  Google Scholar 

  29. H. Hidaka, M. Inagaki, S. Kawamoto, and Y. Sasaki. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochem. 23: 5036 (1984).

    Article  CAS  Google Scholar 

  30. G. G. B. Klaus, A. O’Garra, M. K. Bijsterbosch, and M. Holman. Activation and proliferation signals in mouse B cells. VIII. Induction of DNA synthesis in B cells by a combination of calcium ionophores and phorbol myristate acetate. Eur. J. Immunol. 16: 92 (1986).

    Article  PubMed  CAS  Google Scholar 

  31. T. L. Rothstein, T. R. Baeker, R. A. Miller, and D. L. Kolber. Stimulation of murine B cells by the combination of calcium ionophore plus phorbol ester. Cell. Immunol. 102: 364 (1986).

    Article  PubMed  CAS  Google Scholar 

  32. W. M. Flanagan, B. Corthesy, R. J. Bram, and G. R. Crabtree. Nuclear association of a T cell transcription factor blocked by FK506 and cyclosporin A. Nature 352: 803 (1991).

    Article  PubMed  CAS  Google Scholar 

  33. L. Venkataraman, D. A. Francis, Z. Wang, J. Liu, T. L. Rothstein, and R. Sen. Cyclosporin-A sensitive induction of NF-AT in murine B cells. Immunity 1: 189 (1994).

    Article  PubMed  CAS  Google Scholar 

  34. H. Xie, Z. Wang, and T. L. Rothstein. Signaling pathways for antigen receptor-mediated induction of transcription factor CREB in B lymphocytes. Cell. Immunol.,in press (1996).

    Google Scholar 

  35. S. Nagata, and T. Suda. Fas and Fas ligand: 1pr and gld mutations. Immunol. Today 16: 39 (1995).

    Article  PubMed  CAS  Google Scholar 

  36. J. Ogasawara, R. Watanabe-Fukunaga, M. Adachi, A. Matsuzawa, T. Kasugai, Y. Kitamura, N. Itoh, T. Suda, and S. Nagata. Lethal effect of the anti-Fas antibody in mice. Nature 364: 806 (1993).

    Article  PubMed  CAS  Google Scholar 

  37. J. C. Unkeless. Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors. J. Exp. Med. 150: 580 (1979).

    Article  PubMed  CAS  Google Scholar 

  38. T. Sato, M. Hanada, S. bodrug, S. Irie, N. Iwama, L. H. Boise, C. B. Thompson, E. Golemis, L. Fong, H.-G. Wang, and J. C. Reed. Interactions among members of the Bc1–2 protein family analyzed with a yeast two-hybrid system. Proc. Natl. Acad. Sci. USA 91: 9238 (1994).

    Article  PubMed  CAS  Google Scholar 

  39. G. Núflez, R. Merino, D. Grillot, and M. Gonzalez-Garcia. Bc1–2 and Bcl-x: regulatory switches for lymphoid death and survival. Immunol. Today 15: 582 (1994).

    Article  Google Scholar 

  40. S. Cory. Regulation of lymphocyte survival by the Bc1–2 gene family. Ann. Rev. Immunol. 13: 513 (1995).

    Article  CAS  Google Scholar 

  41. L. H. Boise, M. Gonzalez-Garcia, C. e. Postema, L. Ding, T. Lindsten, L. A. Turka, X. Mao, G. Núnez, and C. B. Thompson. bel-x, a óc1–2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74: 597 (1993).

    Article  PubMed  CAS  Google Scholar 

  42. D. T. Chao, G. P. Linette, L. H. Boise, L. S. White, C. B. Thompson, and S. J. Korsmeyer. Bc1-xL and Bc1–2 repress a common pathway of cell death. J. Exp. Med. 182: 821 (1995).

    Article  PubMed  CAS  Google Scholar 

  43. E. Gulbins, R. Bissonnette, A. Mahboubi, S. Martin, W. Nishioka, T. Brunner, G. Baier, G. Baier-Bitterlich, C. Byrd, F. Lang, R. Kolesnick, A. Altman, and D. Green. FAS-induced apoptosis is mediated via a ceramide-initiated RAS signaling pathway. Immunity 2: 341 (1995).

    Article  PubMed  CAS  Google Scholar 

  44. C. G. Tepper, S. Jayadev, B. Liu, A. Bielawska, R. Wolff, S. Yonehara, Y. A. Hannun, and M. F. Seldin. Role for ceramide as an endogenous mediator of Fas-induced cytotoxicity. Proc. Natl. Acad. Sci. USA 92: 8443 (1995).

    Article  CAS  Google Scholar 

  45. W. E. Paul, and J. Ohara. B-cell stimulatory factor- 1 /interleukin 4. Ann. Rev. Immunol. 5: 429 (1987).

    Article  CAS  Google Scholar 

  46. J. Ohara, and W. E. Paul. B cell stimulatory factor BSF-1: Production of a monoclonal antibody and molecular characterization. Nature 315: 333 (1985).

    Article  PubMed  CAS  Google Scholar 

  47. A. D. Keegan, K. Nelms, L.-M. Wang, J. H. Pierece, and W. E. Paul. Interleukin 4 receptor: signaling mechanisms. Immunol. Today 15: 423 (1994).

    Article  PubMed  CAS  Google Scholar 

  48. M. Dancescu, C. Wu, M. Rubio, G. Delespesse, and M. Sarfati. IL-4 induces conformational change of CD20 antigen via a protein kinase C-independent pathway. Antagonistic effect of anti-CD40 monoclonal antibody. J. Immunol. 148: 2411 (1992).

    PubMed  CAS  Google Scholar 

  49. C. E. Lee, S. R. Yoon, and K. H. Pyun. Interleukin-4 signals regulating CD23 gene expression in human B cells: protein kinase C-independent signaling pathways. Cell. Immunol. 146: 171 (1993).

    Article  PubMed  CAS  Google Scholar 

  50. I. A. C. MacLennan. Germinal centers. Ann. Rev. Immunol. 12: 117 (1994).

    Article  CAS  Google Scholar 

  51. S. L. Parry, J. Hasbold, M. Holman, and G. G. B. Klaus. Hypercross-linking surface IgM or IgD receptors on mature B cells induces apoptosis that is reversed by costimulation with IL-4 and anti-CD40. J. Immunol. 152: 2821 (1994).

    PubMed  CAS  Google Scholar 

  52. B. E. Wilson, E. Mochon, and L. M. Boxer. Induction of bcl-2 expression by phosphorylated CREB proteins during B cell activation. Blood 86: 327a (1995).

    Google Scholar 

  53. B. A. Jacobson, D. J. Panka, K.-A. Nguyen, J. Erikson, A. K. Abbas, and A. Marshak-Rothstein. Anatomy of autoantibody production: dominant localization of antibody-producing cells to T cell zones in Fas-deficient mice. Immunity 3: 509 (1995).

    Article  PubMed  CAS  Google Scholar 

  54. J. C. Rathmell, M. P. Cooke, W. Y. Ho, J. Grein, S. E. Townsend, M. M. Davis, and C. C. Goodnow. CD95 (Fas)-dependent elimination of self-reactive B cells upon interaction with CD4’ T cells. Nature 376: 181 (1995).

    Article  PubMed  CAS  Google Scholar 

  55. G. J. V. Nossal. Negative selection of lymphocytes. Cell 76: 229 (1994).

    Article  PubMed  CAS  Google Scholar 

  56. M. P. Cooke, A. W. Heath, K. M. Shokat, Y. Zeng, F. D. Finkelman, P. s. Linsley, M. Howard, and C. C. Goodnow. Immunoglobulin signal transduction guides the specificity of B cell-T cell interactions and is blocked in tolerant self-reactive B cells. J. Exp. Med. 179: 425 (1994).

    Article  PubMed  CAS  Google Scholar 

  57. J. M. Eris, A. Basten, R. Brink, K. Doherety, M. R. Kehry, and P. D. Hodgkin. Anergic self-reactive B cells present self antigen and respond normally to CD40-dependent T-cell signals but are defective in antigen-receptor-mediated functions. Proc. Natl. Acad. Sci. USA 92: 4392 (1994).

    Article  Google Scholar 

  58. C. C. Goodnow, J. Crosbie, H. Jorgensen, R. A. Brink, and A. Basten. Induction of self-tolerance in mature peripheral B lymphocytes. Nature 342: 385 (1989).

    Article  PubMed  CAS  Google Scholar 

  59. W. E. Paul, and R. A. Seder. Lymphocyte responses and cytokines. Cell 76: 241 (1994).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas L. Rothstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rothstein, T.L. et al. (1996). Inducible Resistance to Fas-Mediated Apoptosis in Primary B Lymphocytes. In: Gupta, S., Cohen, J.J. (eds) Mechanisms of Lymphocyte Activation and Immune Regulation VI. Advances in Experimental Medicine and Biology, vol 406. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0274-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0274-0_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0276-4

  • Online ISBN: 978-1-4899-0274-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics