Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 406))

Abstract

Higher vertebrates frequently contain multigene families of related ligands and their receptors, often with overlapping specificities. Presumably such an organization allows for greater flexibility in the timing and tissue distribution of these molecules. A further level of complexity is introduced by the fact that variants of the same growth factor or receptor can be encoded as alternative transcripts of the same gene. Such variants may remain membrane associated or may be efficiently secreted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.W.J. Smith, J. G. Patton, and B. Nadal-Ginard, Alternative splicing in the control of gene expression, Annu. Rev. Genet. 23: 527 (1989).

    Article  PubMed  CAS  Google Scholar 

  2. P.M. Bingham, T. -B. Chou, I. Mims, and Z. Zachar, On/Off regulation of gene expression at the level of splicing, Trends Genet. 4: 134 (1988).

    Article  PubMed  CAS  Google Scholar 

  3. L.R. Bell, E.M. Maine, R. Schedl, and T.W. Cline, Sex-lethal, a drosophila sex determination switch gene, inhibits sex-specific RNA splicing and sequence similarity to RNAbinding proteins, Cell 55:1037 (1988).

    Google Scholar 

  4. R.T. Boggs, R. Gregor, S. Idriss, J.M. Belote, and M. Mc Keown, Regulation of sexual differentiation in D. melanogaster via alternative splicing of RNA frome the transformer gene, Cell 50: 739 (1987).

    Article  PubMed  CAS  Google Scholar 

  5. C.A. Smith, T. Farrah, and R.G. Goodwin, The TNF receptor superfamily of cellular and viral proteins: activation, costimulation and death, Cell 76: 959 (1994).

    Article  PubMed  CAS  Google Scholar 

  6. S. Nagata, and P. Golstein, The Fas death factor, Science 267: 1449 (1995).

    Article  PubMed  CAS  Google Scholar 

  7. P. Vandenabeele, W. Declercq, R. Beyaert, and W. Fiers, Two tumour necrosis factor receptors: structure and function, TIBS 5: 392 (1995).

    CAS  Google Scholar 

  8. M.G. Cifone, R. De Maria, P. Roncaioli, M.R. Rippo, M. Azuma, L.L. Lanier, A. Santoni, R. and Testi, R, Apoptotic signaling through CD95 (Fas/Apo-1) activates and acidic sphingomyelinase, J. Exp. Med. 180: 1547 (1994).

    Article  PubMed  CAS  Google Scholar 

  9. B.M. Gill, H. Nishikata, G. Chan, T.L. Delovitch, and A. Ochi, Fas antigen and shingomyelin-ceramide turnover-mediated signaling: role in life and death of T lymphocytes, Immunol. Rev. 142: 113 (1995)

    Article  Google Scholar 

  10. E. Gulbins, R. Bissonette, A. Mahboubi, S. Martin, W. Nishioka, T. Brunner, G. Baier, G. Baier-Bitterlich, C. Byrd, F. Lang, R. Kolesnick, A. Altman, and D. Green, Fas-induced apoptosis is mediated via a ceramide-initiated RAS signaling pathway, Immunity 2: 341 (1995).

    Article  PubMed  CAS  Google Scholar 

  11. C. Tepper, S. Jayadev, B. Liu, A. Bielawska, R. Wolff, S. Yonehara, Y.A. Hannun, and M.F. Seldin, Role of ceramide as an endogenous mediator of Fas-induced cytotoxicity, Proc. Natl. Acad. Sci. USA 92: 8443 (1995).

    Article  PubMed  CAS  Google Scholar 

  12. M.G. Cifone, R. Roncaioli, R. De Maria, G. Camarda, A. Santoni, G. Ruberti, and R. Testi, Multiple pathways originate at the Fas/Apo-1 (CD95) receptor: sequential involvement of phosphatidylcholinespecific phospholipase C and acidic sphingomyelinase in the propagation of the apoptotic signal, EMBO J. 14: 5859 (1995).

    PubMed  CAS  Google Scholar 

  13. M.R. Alderson, R.J. Armitage, E. Maraskowsky, T.W. Tough, E. Roux, K. Schooley, F. Ramsdell, and D.H. Lynch, Fas transduces activation signals in normal human T lymphocytes, J. Exp. Med. 178: 2231 (1993).

    Article  PubMed  CAS  Google Scholar 

  14. R.A. Heller, and M. Kronke,Tumor necrosis factor-mediated signaling pathways, J. Cell Biol. 126: 5 (1994).

    Article  PubMed  CAS  Google Scholar 

  15. J. Cheng, T. Zhou, C. Liu, J.P. Shapiro, M.J. Brauer, M.C. Kiefer, P.J. Barr, and J.D. Mountz, Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule, Science 263: 1759 (1994).

    Article  PubMed  CAS  Google Scholar 

  16. I. Cascino, G. Fiucci, G. Papoff, and G. Ruberti, Three functional soluble forms of the human apoptosisinducing Fas molecule are produced by alternative splicing, J. Immunol. 154: 2706 (1995).

    PubMed  CAS  Google Scholar 

  17. G. Papoff, I. Cascino, A. Eramo, G. Starace, D.H. Lynch, and G. Ruberti, An N-terminal domain shared by Fas/Apo-1 (CD95) soluble variants prevents cell death in vitro, (submitted).

    Google Scholar 

  18. C. Liu, J. Cheng, and J.D. Mountz, Differential expression of human Fas mRNA species upon peripheral blood mononuclear cell activation, Biochem. J. 310: 957 (1995)

    PubMed  CAS  Google Scholar 

  19. I. Behrmann, H. Walczak, and P.H. Krammer, Structure of the human APO-1 gene, Eur. J. Immunol. 24: 3057 (1994).

    Article  PubMed  CAS  Google Scholar 

  20. J. Cheng, L. Changdan, W.J. Koopman, and J.D. Mountz, Characterization of the human Fas gene. Exon/Intron organization and promoter region, J. Immunol. 154: 1239 (1995).

    PubMed  CAS  Google Scholar 

  21. F. Rieux-Laucat, F. Le Deist, C. Hivroz, I.A.G. Roberts, K.M. Debatin, A. Fischer, and J.P. de Villartay, Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity, Science 268: 1347 (1995).

    Article  PubMed  CAS  Google Scholar 

  22. G.H. Fisher, F.J. Rosenberg, S.E. Straus, J.K. Dale, L.A. Middelton, A.Y. Lin, W. Strober, M.J. Lenardo, J.M. and Puck, Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome, Cell 81: 935 (1995).

    Article  PubMed  CAS  Google Scholar 

  23. N. Itoh, and S. Nagata, A novel protein domain required for apoptosis, J. Biol. Chem. 268: 10932 (1993).

    PubMed  CAS  Google Scholar 

  24. L.A. Tartaglia, T.M. Ayres, G.H.W. Wong, and D.V. Goeddel, A novel domain within the 55 Kd TNF receptor signals cell death, Cell 74: 845 (1993).

    Article  PubMed  CAS  Google Scholar 

  25. N. Itoh, S. Yonehara, A. Ishii, M. Yonehara, S. Mizushima,M. Sameshima, A. Hase, Y. Seto, and S. Nagata, The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis, Cell 66: 233 (1991).

    Article  PubMed  CAS  Google Scholar 

  26. M.R. Alderson, T.W. Tough, S. Braddy, T. Davis-Smith, E. Roux, K. Schooley, R.E. Miller, and D.H. Lynch, Regulation of apoptosis and T cell activation by Fas-specific monoclonal antibodies. Int. Immunol. 6: 1799 (1994).

    Article  PubMed  CAS  Google Scholar 

  27. P.H. Krammer, et al., The role of APO-1 mediated apoptosis in the immune system, Immunol. Rev. 142: 175 (1994).

    Article  PubMed  CAS  Google Scholar 

  28. L.B. Owen-Schaub, S. Yonehara, W.L. Crump, and E.A. Grimm, DNA fragmentation and cell death is selectively triggered in activated human lymphocytes by Fas antigen engagement,Cellular Immunol. 140: 197 (1992).

    CAS  Google Scholar 

  29. C. Klas, K.-M. Debatin, R.R. Jonker, and P.H. Krammer, Activation interferes with the APO-1 patway in mature human T cells, Int. Immunol. 5: 625 (1993).

    Article  PubMed  CAS  Google Scholar 

  30. A. Anel, M. Buferne, C. Boyer, A.-M. Schmitt-Verhulst, and P. Golstein, T cell receptor-induced Fas ligand expression in cytotoxic T lymphocyte clones is blocked by protein tyrosine kinase inhibitors and Cyclosporin A, Eur. J. Immunol. 24: 2469 (1994).

    Article  PubMed  CAS  Google Scholar 

  31. F. Vignaux, E. Vivier, B. Malissen,V. Depraetere, S. Nagata, and P. Golstein, TCR/CD3 coupling to Fas-based cytotoxicity, J. Exp. Med. 181: 781 (1995).

    Article  PubMed  CAS  Google Scholar 

  32. J. Dhein, H. Walczak, C. Baumier, K.-M. Debatin, and P.H. Krammer, Autocrine T-cell suicide mediated by APO-1/(Fas/CD95), Nature 373: 438 (1995).

    Article  PubMed  CAS  Google Scholar 

  33. T. Brunner, R.J. Mogil, D. La Face, N.J. Yoo, A. Mahboubi, F. Echeverri, S.J. Martin, W.R. Force, D.H. Lynch, C.F. Ware, and D.R.Green, Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T cell hybridomas, Nature 373: 441 (1995).

    Google Scholar 

  34. S.-T. Ju, D.J. Panka, H. Cui, R.M. Ettinger, D.H. El-Khatib, B. Sherr, Z. Stanger, and A. Marshak-Rothstein, Fas (CD95)/FasL interactions required for programmed cell death after T-cell activation, Nature 373: 444 (1995).

    Article  PubMed  CAS  Google Scholar 

  35. M.R. Alderson, T.W. Tough, T. Davis-Smith, S. Braddy, B. Falk, K.A. Schooley, R.G. Goodwin, C.A. Smith, F. Ramsdell, and D.H. Lynch, Fas ligand mediates activation-induced cell death in human T lymphocytes, J. Exp. Med. 181: 71 (1995).

    Article  PubMed  CAS  Google Scholar 

  36. F. Leithauser, J. Dhein, G. Mechtersheimer, K. Koretz, S. Brunderlein, C. Henne, A. Schmidt, K.-M. Debatin, P.H. Krammer, and P. Moller, Constitutive and induced expression of APO-1, a new member of the nerve growth factor/tumor necrosis factor receptor superfamily, in normal and neoplastic cells, Lab. Invest. 69: 415 (1993).

    PubMed  CAS  Google Scholar 

  37. L.B. Owen-Schaub, R. Radinsky, E. Kruzel, K. Berry, and S. Yonehara, Anti-Fas mediated apoptosis in nonhematopoietic tumors: neither Fas/Apo-I nor bcl-2 expression is predictive of biological responsiveness, Cancer Res 54: 1580 (1994).

    PubMed  CAS  Google Scholar 

  38. M.Y. Mapara, R. Bargou, C. Zugck, H. Dohner, F. Ustaoglu, R.R. Jonker, P.H. Krammer, and B. Dorken, APO-1 mediated apoptosis or proliferation in human chronic B lymphocytic leukemia: correlation with bcl-2 oncogene expression, Eur. J. Immunol. 23: 702 (1993).

    Article  PubMed  CAS  Google Scholar 

  39. K.-M. Debatin, C.K. Goldman, T.A. Waldmann and P.H. Krammer, APO-1 induced apoptosis of leukemia cells from patients with adult T-cell leukemia, Blood 81: 2972 (1993).

    PubMed  CAS  Google Scholar 

  40. G. Natoli, A. Ianni, A. Costanzo, G. De Petrillo, I. Ilari, P. Chirillo, C. Balsano, and M. Levrero, Resistance to Fas-mediated apoptosis in human hepatoma cells, Oncogene 11:1157 (1995).

    Google Scholar 

  41. L.B. Owen-Schaub, L.S. Angelo, R. Radinsky, C.F. Ware, T.G. Gesner, and D.P. Bartos, Soluble Fas/Apo-1 in tumor cells: a potential regulator of apoptosis, Cancer Letters 94: 1 (1995).

    Article  PubMed  CAS  Google Scholar 

  42. D.P.M. Hughes, and I.N. Crispe, A Naturally occurring soluble isoforms of murine Fas generated by alternative splicing, J. Exp. Med. 182: 1395 (1995).

    Article  PubMed  CAS  Google Scholar 

  43. E. Knipping, K.-M. Debatin, K. Stricker, B. Heilig, A. Eder, and P.H. Krammer, Identification of soluble APO-1 in supernatants of human B- and T-cell lines and increased serum levels in B- and T-cell leukemias, Blood 85: 1562 (1995).

    PubMed  CAS  Google Scholar 

  44. N. Goel, D.T. Ulrich, E. St Clair, J.A. Fleming, D.H. Lynch, M.F. Seldin, Lack of correlation of serum soluble Fas levels and autoimmune disease, Arthritis Rheum. 38: 1738 (1995).

    Article  PubMed  CAS  Google Scholar 

  45. R.A. Smith, and C. Baglioni, The active form of tumor necrosis factor is a trimer, J. Biol. Chem. 262:6951 (1 987).

    Google Scholar 

  46. M.J. Eck, and S.R. Sprang, The structure of tumor necrosis factor at 2.6 A resolution, J. Biol. Chem. 264: 17595 (1989).

    PubMed  CAS  Google Scholar 

  47. E.Y. Jones, D.I. Stuart, and N.P.C. Walker, Structure of tumor necrosis factor, Nature 338: 225 (1989).

    Article  PubMed  CAS  Google Scholar 

  48. M.J. Eck, M. Ultsch, E. Rinderknecht, A.M. deVos, and S.R. Spring, The structure of human lymphotoxin (tumor necrosis factor beta) at 1.9- A resolution, J. Biol. Chem. 267: 2119 (1992).

    PubMed  CAS  Google Scholar 

  49. D. Banner, A. D’Arcy, W. Janes, R. Gentz, H.-J. Schoenfeld, C. Broger, H. Loetscher, and W. Lesslauer, Crystal structure of the soluble human 55kd TNF receptor-human TNF(3 complex: implications for TNF receptor activation, Cell 73: 431 (1993).

    Article  PubMed  CAS  Google Scholar 

  50. S. Yonehara, A. Ishii, and M. Yonehara, A cell killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of TNF, J. Exp. Med. 169: 1747 (1989).

    Article  PubMed  CAS  Google Scholar 

  51. M. Tanaka, T. Suda, T. Takahashi, and S. Nagata, Expression of the functional soluble form of human Fas ligand in activated lymphocytes, EMBO J. 14: 1129 (1995).

    PubMed  CAS  Google Scholar 

  52. A. Basu, M. Raghmath, S. Bishayee, and M. Das, Inhibition of tyrosine kinase activity of the epidermal growth factor (EGF) receptor by a truncated receptor form that binds to EGF: role for interreceptor interaction in kinase regulation, Mol. Cell. Biol. 9: 671 (1989).

    PubMed  CAS  Google Scholar 

  53. L.M. Obeid, C.M. Linardic, L.A. Karolak, and Y.A. Hannun, Programmed cell death induced by ceramide, Science 259: 1769 (1993).

    Article  PubMed  CAS  Google Scholar 

  54. I. Cascino, G. Papoff, R. De Maria, R. Testi, and G. Ruberti, Fas/Apo- 1/CD95 receptor lacking the intracytoplasmic signaling domain protects tumor cells from Fas-mediated apoptosis, J. Immunol. 156: 13 (1996).

    PubMed  CAS  Google Scholar 

  55. S. Nagata, and T. Suda, Fas and Fas ligand: 1pr and gld mutations, Immunol. Today 16: 39 (1995).

    Article  PubMed  CAS  Google Scholar 

  56. A.M. Chinnaiyan, K. O’Rourke, M. Tewari, and V.M. Dixit, FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis, Cell 81: 505 (1995).

    Article  PubMed  CAS  Google Scholar 

  57. M.P. Boldin, E.E. Varfolomeev, Z. Pancer, I.L. Mett, J.H. Camonis, and D. Wallach, A novel protein that interact with the death domain of Fas/Apo-1 contains a sequence motif related to the death domain, J. Biol. Chem. 270: 7795 (1995).

    Article  PubMed  CAS  Google Scholar 

  58. H. Hsu, J. Xiong, and D.V. Goeddel, The TNF receptor 1-associated protein TRADD signals cell death and NF-kB activation, Cell 81: 495 (1995).

    Article  PubMed  CAS  Google Scholar 

  59. B.Z. Stanger, P. Leder, T.-H. Lee, E. Kim, and B. Seed, RIP: a novel protein containing a death domain that interacts with Fas/Apo-1 (CD95) in Yeast and causes cell death, Cell 81: 513 (1995).

    Article  PubMed  CAS  Google Scholar 

  60. K. White, M.E. Grether, J.M. Abrams, L. Young, K. Farrell, and H. Steller, Genetic control of programmed cell death in Drosophila, Science 264: 677 (1994).

    Article  PubMed  CAS  Google Scholar 

  61. P. Golstein, D. Marguet, and V. Depraetere, Homology between Reaper and the cell death domains of Fas and TNFR1, Cell 81: 185 (1995).

    Article  PubMed  CAS  Google Scholar 

  62. E. Feinstein, A. Kimchi, D. Wallach, M. Boldin, and E. Varfolomeev, The death domain: a module shared by proteins with diverse cellular functions, TIBS 20: 342 (1995).

    PubMed  CAS  Google Scholar 

  63. K. Hofman, and J. Tschopp, The death domain motif in Fas (Apo-1) and TNF receptor is present in proteins involved in apoptosis and axonal guidance, FEBS Lett. 371: 321 (1995).

    Article  Google Scholar 

  64. F.C. Kischkel, S. Hellbardt, I. Behrmann, M. Germer, M. Pawlita, P.H. ‘Crammer, and M.E. Peter, Cytotoxicity-dependent APO-1 (Fas/CD95)- associated proteins form a death-inducing signaling complex (DISC) with the receptor, EMBO J. 14: 5579 (1995).

    PubMed  CAS  Google Scholar 

  65. X. Su, T. Zhou, Z. Wang, P. Yang, R.S. Jope, J.D. Mountz, Defective expression of hematopoietic cell protein tyrosine phosphatase (HCP) in lymphoid cells blocks Fas-mediated apoptosis, Immunity 2: 353 (1995).

    Article  PubMed  CAS  Google Scholar 

  66. T. Sato, S. Irie, S. Kitada, and J.C. Reed, FAP-1: a protein tyrosine phosphatase that associates with Fas, Science 268: 411 (1995).

    Article  PubMed  CAS  Google Scholar 

  67. R.C. Bargou, P.T. Daniel, M.Y. Mapara, K. Bommert, C. Wagener, B. Kallinich, H.D. Royer, and B. Dorken, Expression of the bcl-2 gene family in normal and malignant breast tissue: low bax-a expression in tumor cells correlates with resistance towards apoptosis, Int. J. Cancer 60: 854 (1995).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovina Ruberti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ruberti, G., Cascino, I., Papoff, G., Eramo, A. (1996). Fas Splicing Variants and their Effect on Apoptosis. In: Gupta, S., Cohen, J.J. (eds) Mechanisms of Lymphocyte Activation and Immune Regulation VI. Advances in Experimental Medicine and Biology, vol 406. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0274-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0274-0_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0276-4

  • Online ISBN: 978-1-4899-0274-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics