Conformational Analysis

The Elevation of Two-Dimensional Formulas into the Third Dimension
  • Ernest L. Eliel


The subject of this essay concerns the progression from two-dimensional to three-dimensional structural formulas, with emphasis on the development of conformational analysis. We are all aware that the second half of the 20th century has been a golden age in the development of stereochemistry, from Barton’s conformational analysis in 1950, through the Woodward-Hoffmann rules and Woodward’s ingenious diastereoselective syntheses, to the many highly efficient enantioselective syntheses of today. Less well known — at least to those not schooled in the history of chemistry — is the fact that an at least equally brilliant development in structural chemistry occurred 100 years earlier, specifically in the years 1858 to 1892.


Fumaric Acid Conformational Analysis Succinic Anhydride Asymmetric Carbon Atom Stable Ground State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    a) cf. O. T. Benfey, ed., Classics in the Theory of Chemical Combination, Krieger, Malabar, FL, 1981, pp. 1-108.Google Scholar
  2. b) id., From Vital Force to Structural Formulas, Houghton Mifflin, Boston, MA, 1964, pp. 1-75.Google Scholar
  3. 2.
    The term “constitution” was used prior to 1858, if perhaps vaguely. In the title of Loschmidt’s 1861 booklet (ref. 8) it includes connectivity and it is in this latter sense that the term has been defined in a recent text: E. L. Eliel, S. H. Wilen, Stereochemistry of Organic Compounds, Wiley, 1994. In the same text “structure” is defined as the complete three-dimensional array of the atoms in a molecule: Structure = Constitution + Configuration + Conformation. Butlerov (ref. 17) in his original definition of structure calls it the manner of the mutual linkage of atoms in a chemical compound, and while in 1861 this may have been synonymous with constitution, in modern parlance the “manner of mutual linkage” may be considered to include the three-dimensional array, i.e. configuration and conformation.Google Scholar
  4. 3.
    A. S. Couper, C. R. Acad. Sci. 46, 1157 (1858).Google Scholar
  5. A. S. Couper, C. R. London, Edinburgh, Dublin Philos. Mag. J. Sci. [4] 16, 104 (1858).Google Scholar
  6. A. S. Couper, C. R. London, Ann. Chim. (Paris) [3] 53, 489 (1858); see also ref. la, pp. 132 and 136.Google Scholar
  7. 4.
    A. Kekulé, Liebigs Ann. Chem. Pharm. 106, 129 (1858); translated in ref. la, p. 109.CrossRefGoogle Scholar
  8. 5.
    cf. R. Anschütz, August Kekulé, Verlag Chemie, Berlin, 1929, Vol. I, pp. 156, 157. Kekulé’s “caterpillar” formulas were apparently presented in his lectures as early as 1857: ibid., p. 162.Google Scholar
  9. 6.
    A. Kekulé, Lehrbuch der Organischen Chemie, Enke, Erlangen, Vol. 1, 1861.Google Scholar
  10. 7.
    Polemics were the order of the day in the 1860’s. Kekulé complained about Couper’s publication in Compt. rend.: A. Kekulé, C. R. Acad. Sci. 47, 378 (1858) and, in a letter to Erlenmeyer in 1862 (ref. 5, p. 305), calls Loschmidt’s Konstitutionsformeln (constitutional formulas) “Confusionsformeln” (confused formulas). However, Kekulé himself got confused on at least one occasion (ref. 5, pp. 290, 291): he gives two different formulas for propanol-2: which he considers isomeric; in fact, of course, they are only different manners of writing the same constitutional formula.Google Scholar
  11. 8.
    J. Loschmidt, Konstitutionsformeln der organischen Chemie in graphischer Darstellung, R. Anschütz, ed., Ostwald’s Klassiker No 190, Engelmann, Leipzig, 1913. The original appeared in 1861 under the title “Chemische Studien”; the Anschütz edition available to the author contains some improvements in the original formula drawings.Google Scholar
  12. 9.
    Ref. 6, footnote on p. 160.Google Scholar
  13. 10.
    Ref. 8, Scheme 185.Google Scholar
  14. 11.
    W. J. Wiswesser, Aldrichimica Acta 22, 17 (1989).Google Scholar
  15. 12.
    cf. G. P. Schiemenz, Sudhoffs Arch. 78 (1), 41 (1994).Google Scholar
  16. 13.
    A. Kekulé, Bull. Soc. Chim. Fr. Nouvelle sen [3] 1, 98 (1865).Google Scholar
  17. A. Kekulé, Bull. Acad. R. Belg. [2] 19, 551 (1865).Google Scholar
  18. A. Kekulé, Justus Liebigs Ann. Chem. 137, 129 (1866). See also.CrossRefGoogle Scholar
  19. A. Kekulé, Ber. Dtsch. Chem. Ges. 2, 362 (1869).CrossRefGoogle Scholar
  20. A. Kekulé, Justus Liebigs Ann. Chem. 162, 77 (1872).CrossRefGoogle Scholar
  21. 14.
    A. Kekulé, Lehrbuch der Organischen Chemie, Enke, Erlangen, Vol. 2, 1866, pp. 514, 515.Google Scholar
  22. 15.
    A. Crum Brown, Trans. R. Soc. Edinburgh 23, 707 (1864).CrossRefGoogle Scholar
  23. A. Crum Brown, Trans. R. Soc. Edinburgh 24, 331 (1866).CrossRefGoogle Scholar
  24. A. Crum Brown, J. Chem. Soc. 18, 230 (1865).CrossRefGoogle Scholar
  25. 16.
    A. Kekulé, Z. f. Chem. N. F. 3, 214 (1867); see especially p. 218. Reprinted in ref. 5, Vol. II, p. 525.Google Scholar
  26. 17.
    A. M. Butlerov, Z. Chem. Pharm., 4, 549 (1861); The journal abbreviation stands for “Zeitschrift für Chemie und Pharmacie”, a journal founded by Kekulé, Erlenmeyer and others at the University of Heidelberg in 1858 as “Kritische Zeitschrift für Chemie, Physik und Mathematik”, renamed with Vol 3, 1860 as above and renamed again “Zeitschrift für Chemie” with Vol. 8, 1865. (I am indebted to O. T. Benfey for this information.) The journal seems to have disappeared in the 1870’s, after Ber. Dtsch. Chem. Ges. was founded in 1868. It seems that many of the early “structural chemists” published in this journal.Google Scholar
  27. 18.
    A. M. Butlerov, Z. Chem. Pharm. 5, 297 (1862).Google Scholar
  28. 19.
    A. M. Butlerov, Z. Chem. Pharm. 6, 500 (1863).Google Scholar
  29. 20.
    L. Pasteur, Recherches sur la Dissymétrie Moléculaire des Produits Organiques Naturels, two lectures delivered in Paris, January 20 and February 3, 1860. See J. Jacques, ed., Sur la Dissymétrie Moléculaire, Christian Bourgois, Paris, 1986. An English translation under the erroneous title “Researches on the Molecular Asymmetry of Natural Organic Products” may be found in G. M. Richardson, ed., The Foundations of Stereochemistry, American Book Co., New York, 1901, and in Alembic Club Reprint No. 14. (Asymmetry and Dissymmetry are not equivalent terms; see ref. 65, p. 1197.).Google Scholar
  30. 21.
    J. H. van’t Hoff, Arch. Ned. Sci. Exactes Nat. 9, 445 (1874).Google Scholar
  31. J. H. van’t Hoff, Bull Soc. Chim. Fr. [2], 23, 295 (1875). The original version was published in Dutch in a pamphlet in 1874. For an English translation, see ref. 1 a, p. 151.Google Scholar
  32. 22.
    J. A. Le Bel, Bull. Soc. Chim. Fr. [2], 22, 337 (1874); translated in ref. la, p. 161.Google Scholar
  33. 23.
    e.g. S. F. Mason. Top. Stereochem. 9, 1 (1976).CrossRefGoogle Scholar
  34. H. A. M. Snelders, in “van’t Hoff-Le Bel Centennial”, O. B. Ramsey, ed., Am. Chem. Soc, Washington, DC (Symposium Series No. 12), 1975, p. 66.Google Scholar
  35. 24.
    J. H. van’t Hoff, La Chimie dans l’Espace, Bazendijk, Rotterdam, 1875, pp. 13-14.Google Scholar
  36. 25.
    H. Kolbe, J. Prakt. Chem. [2] 15, 473 (1877).Google Scholar
  37. 26.
    cf. P. H. Hermans, in “van’t Hoff-Le Bel Centennial”, O. B. Ramsey, ed., Am. Chem. Soc, Washington, DC, 1975, p. 123.Google Scholar
  38. 27.
    C. A. Bischoff, Ber. Dtsch. Chem. Ges. 23, 620 (1890). cf. G. V. Bykov, ref. 26, p. 114.CrossRefGoogle Scholar
  39. 28.
    A. Baeyer, Ber. Dtsch. Chem. Ges. 18, 2269 (1885).CrossRefGoogle Scholar
  40. 29.
    A. Baeyer, Justus Liebigs Ann. Chem. 258, 145 (1890).CrossRefGoogle Scholar
  41. 30.
    H. Sachse, Ber. Dtsch. Chem. Ges. 23, 1363 (1890).CrossRefGoogle Scholar
  42. 31.
    H. Sachse, Z. Phys. Chem. 10, 203 (1892).Google Scholar
  43. 32.
    O. Aschan, Justus Liebigs Ann. Chem. 271, 262 (1892).CrossRefGoogle Scholar
  44. 33.
    A. Werner, H. E. Conrad, Ber. Dtsch. Chem. Ges. 32, 3046 (1899).CrossRefGoogle Scholar
  45. 34.
    O. Aschan, Chemie der Alicyklischen Verbindungen, Vieweg, Braunschweig, 1905.Google Scholar
  46. 35.
    E. W. M. Mohr, Chem. Zentralbl. 1915 II, 1065 (Sitzungsber. Heidelberg. Akad. Wiss., Math. Naturwiss. Kl., Abt. A, 1915, 7. Abh.).Google Scholar
  47. E. W. M. Mohr, J. Prakt. Chem. [2] 98, 315 (1918).CrossRefGoogle Scholar
  48. E. W. M. Mohr, J. Prakt. Chem. 103, 316 (1922).CrossRefGoogle Scholar
  49. 36.
    W. Hückel, Justus Liebigs Ann. Chem. 441, 1 (1925).CrossRefGoogle Scholar
  50. 37.
    J. Boëseken, H. G. Derx, Reel. Trav. Chim. Pays-Bas 40, 519, 529 (1921).CrossRefGoogle Scholar
  51. 38.
    J. Boëseken, Recl. Trav. Chim. Pays-Bas 40, 553 (1921).CrossRefGoogle Scholar
  52. 39.
    P. H. Hermans, Z. Phys. Chem. 113, 337 (1924).Google Scholar
  53. 40.
    S. Winstein, N. J. Holness, J. Am. Chem. Soc. 77, 5562 (1955).CrossRefGoogle Scholar
  54. 41.
    S. B. Hendricks, C. Biticke, J. Am. Chem. Soc. 48, 3007 (1926).CrossRefGoogle Scholar
  55. 42.
    R. G. Dickinson, C. Bilicke, J. Am. Chem. Soc. 50, 764 (1928).CrossRefGoogle Scholar
  56. 43.
    R. S. Rasmussen, J. Chem. Phys. 11, 249 (1943).CrossRefGoogle Scholar
  57. 44.
    K. W. F. Kohlrausch, H. Wittek, Z. Phys. Chem. 48B, 177 (1941).Google Scholar
  58. 45.
    cf. O. Hassel, H. Viervoll, Acta Chem. Scand. 1, 149 (1947).CrossRefGoogle Scholar
  59. 46.
    J. G. Aston, S. C. Schumann, H. L. Fink, P. M. Doty, J. Am. Chem. Soc. 63, 2029 (1941).CrossRefGoogle Scholar
  60. 47.
    R. L. Shriner, R. Adams, C. Marvel, “Stereochemistry” in H. Gilman, ed., Organic Chemistry, 2nd ed., Vol. 1, Wiley, New York, 1943, p. 321.Google Scholar
  61. 48.
    J. D. Kemp, K. S. Pitzer, J. Chem. Phys. 4, 749 (1936).CrossRefGoogle Scholar
  62. J. D. Kemp, K. S. Pitzer, J. Am. Chem. Soc. 59, 276 (1937).CrossRefGoogle Scholar
  63. K. S. Pitzer, J. Chem. Phys. 5, 473 (1937).CrossRefGoogle Scholar
  64. 49.
    cf. S. Mizushima, Structure of Molecules and Internal Rotation, Academic Press, New York, 1954.Google Scholar
  65. S. Mizushima, Pure Appl. Chem. 7, 1 (1963).CrossRefGoogle Scholar
  66. 50.
    O. Hassel, Tidsskr. Kjemi Bergves. Metall. 3 [5], 32 (1943); transi, by.Google Scholar
  67. K. Hedberg, Top. Stereochem. 6, 11 (1971).Google Scholar
  68. 51.
    C. W. Beckett, K. S. Pitzer, R. Spitzer, J. Am. Chem. Soc. 69, 2488 (1947);cf.CrossRefGoogle Scholar
  69. E. J. Prosen, W. H. Johnson, F. D. Rossini, J. Res. Natl. Bur. Stand. 39, 173 (1947).CrossRefGoogle Scholar
  70. 52.
    J. E. Leonard, G. S. Hammond, H. E. Simmons, J. Am. Chem. Soc. 97, 5052 (1975).CrossRefGoogle Scholar
  71. 53.
    D. H. R. Barton, Experientia 6, 316 (1950).CrossRefGoogle Scholar
  72. D. H. R. Barton, reprinted in Top. Stereochem. 6, 1 (1971).CrossRefGoogle Scholar
  73. 54.
    E. L. Eliel, 100+ Years of Conformational Analysis, chapter 1 in ref. 69, p. 1.Google Scholar
  74. 55.
    See also D. H. R. Barton, Some Recollections of Gap Jumping, American Chemical Society, Washington, DC, 1991.Google Scholar
  75. 56.
    E. L. Eliel, From Cologne to Chapell Hill, American Chemical Society, Washington, DC, 1990.Google Scholar
  76. 57.
    E. L. Eliel, Experientia 9, 91 (1953).CrossRefGoogle Scholar
  77. 58.
    J. Read, W. J. Grubb, J. Chem. Soc. 1934, 1779.Google Scholar
  78. 59.
    E. L. Eliel, R. S. Ro, Chem. Ind. (London) 1956, 251.Google Scholar
  79. 60.
    cf. C. H. Bushweller, Stereodynamics of Cyclohexane and Substituted Cyclohexanes. Substituent A Values, chapter 2 in ref. 69, p. 25.Google Scholar
  80. 61.
    E. L. Eliel, C. A. Lukach, J. Am. Chem. Soc. 79, 5986 (1957).CrossRefGoogle Scholar
  81. 62.
    E. L. Eliel, R. S. Ro, J. Am. Chem. Soc. 79, 5992 (1957).CrossRefGoogle Scholar
  82. 63.
    E. L. Eliel, Chem. Ind. (London) 1959, 568.Google Scholar
  83. 64.
    F. R. Jensen, D. S. Noyce, C. H. Sederholm, A. J. Berlin, J. Am. Chem. Soc. 82, 1256 (1960).CrossRefGoogle Scholar
  84. F. R. Jensen, D. S. Noyce, C. H. Sederholm, A. J. Berlin, J. Am. Chem. Soc. 84, 386 (1962).CrossRefGoogle Scholar
  85. 65.
    E. L. Eliel, S. H. Wilen, Stereochemistry of Organic Compounds, Wiley, New York, 1994, chapter 11.Google Scholar
  86. 66.
    R. L. Wilier, E. L. Eliel, J. Am. Chem. Soc. 99, 1925 (1977).CrossRefGoogle Scholar
  87. E. L. Eliel, D. Kandasamy, C.-Y. Yen, K. D. Hargarve, J. Am. Chem. Soc. 102, 3698 (1980).CrossRefGoogle Scholar
  88. E. L. Eliel, K. D. Hargrave, K. M. Pietrusiewicz, M. Manoharan, J. Am. Chem. Soc. 104, 3635 (1982). See also ref. 54, p. 8.CrossRefGoogle Scholar
  89. 67.
    cf. E. L. Eliel, M. C. Knoeber, J. Am. Chem. Soc. 88, 5347 (1966).CrossRefGoogle Scholar
  90. cf. E. L. Eliel, M. C. Knoeber, J. Am. Chem. Soc. 90, 3444 (1968).CrossRefGoogle Scholar
  91. 68.
    E. L. Eliel, N. L. Allinger, S. J. Angyal, G. A. Morrison, Conformational Analysis, Interscience-Wiley, New York, 1965; reprinted by Am. Chem. Soc, Washington, DC, 1981.Google Scholar
  92. 69.
    E. Juaristi, ed., Conformational Behavior of Six-membered Rings, VCH, New York, 1995.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Ernest L. Eliel
    • 1
  1. 1.Department of ChemistryUniversity of North CarolinaChapel HillUSA

Personalised recommendations