Trace Gas Analysis with Integrating Spheres
Chapter
Abstract
To measure small gas concentrations by absorption spectroscopy, the wavelength of monochromatic light is adjusted to the absorption line of the gas molecule. According to Lambert-Beer’s absorption law, the absorption coefficient K of the gas can then be determined from the ratio of the radiant flux transmitted by the gas sample to the radiant flux without gas.1
Keywords
Absorption Cross Section Radiant Flux Reference Path Sphere Wall Wall Reflectance
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.J. Staab, Industrielle Gasanalyse, in: TM Tech. Men. 58, 2, 75 (1991).Google Scholar
- 2.J. Staab, Industrielle Gasanalyse, in: TM Tech. Men. 60, 1, 29 (1993).Google Scholar
- 3.E. Helbig, Grundlagen der Lichtmesstechnik, Geest & Portig K.-G., Leipzig 1972.Google Scholar
- 4.H. Hess, A. Ziegler, Zeitverhalten der indirekten Bestrahlungsstärke von Ulbrichtkugeln, Optik s90, 163 (1992).Google Scholar
- 5.H. Hess, H. Schimpl, A. Ziegler, Messung des Absorptionskoeffizienten von Gasen mit Ulbrichtkugeln, to be published in Optik (1996).Google Scholar
- 6.F. Wagner, Einfluß reaktiver Gase auf das Transmissionsverhalten von Ulbrichtkugeln, TU-Graz, Diploma thesis (1995).Google Scholar
- 7.K. Weber, V. Klein, W. Diehl, Optische Fernmeßverfahren zur Bestimmung gasförmiger Luftschadstoffe in der Troposphäres, VDI Berichte 838, 201 (1990).Google Scholar
- 8.K. A. Frederikson, Laser Remote Chemical Analysis, John Wiley, New York 1988.Google Scholar
- 9.J. Staab, Industrielle Gasanalyse, in: TM Tech. Men. 59, 4, 173 (1992).Google Scholar
Copyright information
© Springer Science+Business Media New York 1997