Advertisement

Configurational Stability and Reactions of Benzylic Carbanions with an Acyloxy or Dialkylphosphoryloxy Substituent

  • Friedrich Hammerschmidt
  • Achim Hanninger

Abstract

Secondary and tertiary α-methylbenzyllithium compounds were prepared by deprotonation of the corresponding carbon acids. Carbanions with a 2,4,6-triisopropylbenzoyloxy substitutent are configurationally stable in toluene/20% diethyl ether and react with electrophiles with retention (protonation, acylation with methyl chloroformate and dimethyl carbonate) or inversion (trimethyltin chloride). Secondary and tertiary carbanions with a dialkylphosphoryloxy substituent isomerise as soon as they are formed to α-hydroxyphenyl-methylphosphonates with retention of configuration (phosphate-phosphonate rearrangement).

Keywords

Carbon Acid Enantiomeric Excess Configurational Stability Dimethyl Carbonate Hydroxy Ketone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. J. Cram; Fundamentals of Carbanion Chemistry, Organic Chemistry, A Series of Monographs, ed. by A. T. Blomquist, Academic Press, 1965. A. Krief, Tetrahedron 36, 2531 (1980).CrossRefGoogle Scholar
  2. 2.
    W. C. Still, C. Sreekumar, J. Am. Chem. Soc. 102, 1201 (1980).CrossRefGoogle Scholar
  3. D. Hoppe, F. Hintze, P. Tebben, M. Paetow, H. Ahrens, J. Schwerdtfeger, P. Sommerfeld, J. Haller, W. Guarnieri, S. Kolczewski, T. Hense, I. Hoppe, Pure Appl. Chem. 66, 1479 (1994).CrossRefGoogle Scholar
  4. R. E. Gawley, Q. Zhang, Tetrahedron 50, 6077 (1994).CrossRefGoogle Scholar
  5. 3.
    R. W. Hoffmann, T. Rühl, J. Harbach, Liebigs Ann. Chem. 1992, 725.Google Scholar
  6. 4.
    T. Ruhland, R. Dress, R. W. Hoffmann, Angew. Chem. 105, 1487 (1993).CrossRefGoogle Scholar
  7. 4.
    T. Ruhland, R. Dress, R. W. Hoffmann, Angew. Chem. Int. Ed. Engl. 32, 1467 (1993).CrossRefGoogle Scholar
  8. H. J. Reich, R. R. Dykstra, Angew. Chem. 105, 1489 (1993).CrossRefGoogle Scholar
  9. H. J. Reich, R. R. Dykstra, Angew. Chem. Int. Ed. Engl. 32, 1469 (1993).CrossRefGoogle Scholar
  10. 5.
    W. Zarges, M. Marsch, K. Harms, G. Boche, Chem. Ber. 122, 2303 (1989).CrossRefGoogle Scholar
  11. W. Zarges, M. Marsch, K. Harms, F. Haller, G. Frenking, G. Boche, Chem. Ber. 124, 861 (1991).CrossRefGoogle Scholar
  12. 6.
    G. Vanermen, S. Toppet, M. V. Beylen, Chem. Soc. Perkin Trans II, 1989, 707. H. Ahlbrecht, J. Harbach, R. W. Hoffmann, T. Ruhland, Liebigs Ann. Chem. 1995, 211.Google Scholar
  13. 7.
    J. P. Gilday, J. C. Gallucci, L. A. Paquette, J. Org. Chem. 54, 1399 (1989).CrossRefGoogle Scholar
  14. 8.
    A. Wright, R. West, J. Am. Chem. Soc. 96, 3227 (1974).CrossRefGoogle Scholar
  15. 9.
    F. Hammerschmidt, A. Hanninger, Chem. Ber. 128, 823 (1995).CrossRefGoogle Scholar
  16. 10.
    A. Carstens, D. Hoppe, Tetrahedron 50, 6097 (1994).CrossRefGoogle Scholar
  17. 11.
    P. Beak, L. G. Carter, J. Org. Chem. 46, 2363 (1981).CrossRefGoogle Scholar
  18. 12.
    F. Hammerschmidt, A. Hanninger, Chem. Ber. 128, 1069 (1995).CrossRefGoogle Scholar
  19. 13.
    N. G. Rondan, K. N. Houk, P. Beak, W. J. Zajdel, J. Chandrasekhar, P. v. R. Schleyer, J. Org. Chem. 46, 4108 (1981).CrossRefGoogle Scholar
  20. 14.
    E. L. Eliel, J. P. Freeman, J. Am. Chem. Soc. 74, 923 (1952).CrossRefGoogle Scholar
  21. 15.
    E. D. Jemmis, J. Chandrasekhar, P. v. R. Schleyer, J. Am. Chem. Soc. 101, 527 (1979).CrossRefGoogle Scholar
  22. 16.
    F. Hammerschmidt, H. Völlenkle, Liebigs Ann. Chem. 1986, 2053.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Friedrich Hammerschmidt
    • 1
  • Achim Hanninger
    • 1
  1. 1.Institute for Organic ChemistryUniversity of ViennaAustria

Personalised recommendations