The Significance of the Hydrogen Bond for Physiology

Aromatic Rings as Hydrogen Bond Acceptors
  • Max F. Perutz


For Christmas 1939 a girl friend presented me with a book token — I used it to buy Linus Pauling’s newly published Nature of the Chemical Bond 1 which I would otherwise not have been able to afford. I found in it the following passage:

“Although the hydrogen bond is not strong it has great significance in determining the properties of substances. Because of its small bond energy and the small activation energy involved in its formation and rupture, the hydrogen bond is especially suited to play a part in reactions occurring at normal temperatures. It has been recognized that hydrogen bonds restrain protein molecules to their native configurations, and I believe that as the methods of structural chemistry are further applied to physiological problems it will be found that the significance of the hydrogen bond for physiology is greater than that of any other single structural feature.”


Hydrogen Bond Benzene Ring Aromatic Side Chain Human Haemoglobin Translational Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Pauling, The Nature of the Chemical Bond. Cornell University Press, Ithaca, N.Y. 1939.Google Scholar
  2. 2.
    A.T. Hagler, S. Lifson, J.Am.Chem.Soc. 96, 5327 (1974).CrossRefGoogle Scholar
  3. 3.
    L. Pauling, The electronic structure of haemoglobin. In Haemoglobin, p. 57–66. Butterworth Scientific Publications, London 1949.Google Scholar
  4. 4.
    G. Fermi, M.F. Perutz, Haemoglobin and Myoglobin. Atlas of Molecular Structures in Biology. Eds. D.C. Phillips, F.M. Richards, Clarendon Press, Oxford 1981.Google Scholar
  5. 5.
    J. Schellman, Comptes rend. Lab. Carlsberg. Sér.chim. 29, 230 (1955).Google Scholar
  6. 6.
    W. Kauzmann, Adv. Protein Chem. 14, 1 (1959).CrossRefGoogle Scholar
  7. 7.
    H.S. Frank, M.W. Evans, J.Chem.Phys. 13, 507 (1945).CrossRefGoogle Scholar
  8. 8.
    C. Chothia, Nature 254, 304 (1975).CrossRefGoogle Scholar
  9. 9.
    T. Asakura, K. Adachi, J.S. Wiley, L.W.M. Fung, C. Ho, J. Kilmartin, M.R Perutz, J.Mol.Biol. 104, 185 (1976).CrossRefGoogle Scholar
  10. 10.
    S.E.V. Phillips, B.P. Schoenborn, Nature 292, 81 (1981).CrossRefGoogle Scholar
  11. 11.
    R.J. Rohlfs, A.J. Mathews, T.E. Carver, J.S. Olson, B.A. Springer, K.D. Egeberg, S.G. Sligar, J.Biol.Chem. 265, 3168 (1990).Google Scholar
  12. 12.
    J.V. Kilmartin, J.H. Fogg, M.F. Perutz, Biochemistry 19, 3189 (1980).CrossRefGoogle Scholar
  13. 13.
    M.F. Perutz, G. Fermi, D.J. Abraham, C. Poyart, E. Bursaux, J.Am.Chem.Soc. 108, 1064 (1986).CrossRefGoogle Scholar
  14. 14.
    E. Tüchsen, C. Woodward, Biochemistry 26, 1918 (1987).CrossRefGoogle Scholar
  15. 15.
    M. Levitt, M.F. Perutz, J.Mol.Biol. 201, 751 (1988).CrossRefGoogle Scholar
  16. 16.
    W. Klemperer, M.W. Cronyn, A.K. Maki, G.C. Pimentel, J.Am.Chem.Soc. 76, 5846 (1954).CrossRefGoogle Scholar
  17. 17.
    J.L. Knee, L.R. Khundkar, A.H. Zewail, J.Chem.Phys. 87, 115 (1987).CrossRefGoogle Scholar
  18. 18.
    S. Suzuki, P.G. Green, R.E. Bumgarner, S. Dasgupta, W.A. Goddard III., G.A. Blake, Science 257, 942 (1992).CrossRefGoogle Scholar
  19. 19.
    J.L. Atwood, F. Hamada, K.D. Robinson, G.W. Orr, R.L. Vincent, Nature 349, 683 (1991).CrossRefGoogle Scholar
  20. 20.
    D.A. Rodham, S. Suzuki, R.D. Suenram, F.J. Lovas, S. Dasgupta, W.A. Goddard III., G.A. Blake, Nature 362, 735 (1993).CrossRefGoogle Scholar
  21. 21.
    E. Arunan, H.S. Gutowsky, J.Chem.Phys. 98, 4294 (1993).CrossRefGoogle Scholar
  22. 22.
    H.S. Rzepa, M.L. Webb, A.M. Slawin, D.J. Williams, J.Chem.Soc.Chem.Comm. 1991, 765.Google Scholar
  23. 23.
    A.T. McPhail, G.A. Sim, J.Chem.Soc.Chem.Comm. 1965, 125.Google Scholar
  24. 24.
    J.L. Sussman, M. Harel, F. Frolow, C. Oefner, A. Goldman, L. Toker, I. Silman, Science 253, 872 (1991).CrossRefGoogle Scholar
  25. 25.
    J.-L. Galzi, F. Revah, D. Black, M. Goeldner, C. Hirth, J.P. Changeux, J.Biol.Chem. 265, 10430 (1990).Google Scholar
  26. 26.
    D.A. Dougherty, D.A. Stauffer, Science 250, 1558 (1990).CrossRefGoogle Scholar
  27. 27.
    R. Loewenthal, J. Sancho, A.R. Fersht, J.Mol.Biol. 224, 759 (1992).CrossRefGoogle Scholar
  28. 28.
    G. Waksman, D. Kominos, S.C. Robertson, N. Pant, D. Baltimore, R.B. Birge, D. Cowburn, H. Hanafusa, B.J. Mayer, M. Overduin, M.D. Resh, C.B. Rios, L. Silverman, J. Kuriyan, Nature 258, 646 (1992).CrossRefGoogle Scholar
  29. 29.
    G. Parkinson, H. Berman, A. Gunasekera, R.H. Ebright (to be published).Google Scholar
  30. 30.
    A.R. Fersht, FEBS Lett. 325, 5 (1993).CrossRefGoogle Scholar
  31. 31.
    F. Toda, K. Tanaka, T. Hyoda, T.C.W. Mak, Chem.Lett. 1988, 107.Google Scholar
  32. 32.
    W.J. Westerhaus, O. Knop, M. Falk, Can.J.Chem. 58, 1355 (1980).CrossRefGoogle Scholar
  33. 33.
    J. Seetharaman, S.S. Rajan, R.J. Srinivasan, Cryst.Spectrosc. 23, 167 (1993).CrossRefGoogle Scholar
  34. 34.
    G.V. Gridunova, V.E. Shklover, Y.T. Struchkov, B.A. Chayanov, Kristallografiya 28, 286 (1993).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Max F. Perutz
    • 1
  1. 1.Laboratory of Molecular BiologyCambridgeEngland

Personalised recommendations