Skip to main content

Diffusion and Dissociation of Two-Dimensional Islands on FCC Metal (100) Surfaces

  • Chapter
Surface Diffusion

Part of the book series: NATO ASI Series ((NSSB,volume 360))

Abstract

The mobility and the stability of small two-dimensional islands on a substrate are basic issues of surface science and thin-film growth. In this article, we present our main results from a series of theoretical studies of island diffusion and dissociation on several fcc metal (100) surfaces, with and without the effects of hydrogen as surface impurities. We found that a collective atomic process, shearing of a dimer belonging to a compact island, in many cases provides the most effective pathway for island diffusion. Consideration of this novel atomic process leads to the possibility of observing a new set of critical island sizes in dynamical island growth or coarsening. When H is introduced into the Ni system, the mobility of adatoms and islands of all sizes are enhanced. This conclusion suggests that H will function as an anti-surfactant in Ni(100) homoepitaxy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Stolt, W. R. Graham, and G. Ehrlich, J. Chem. Phys. 65, 3206 (1976).

    Article  ADS  Google Scholar 

  2. D. W. Bassett, J. Phys. C (Solid State Phys.) 9, 2491 (1976).

    Article  ADS  Google Scholar 

  3. T. T. Tsong and R. Casanova, Phys. Rev. B 22, 4632 (1980).

    Article  ADS  Google Scholar 

  4. S. C. Wang and G. Ehrlich, Surf. Sci. 239, 301 (1990).

    Article  ADS  Google Scholar 

  5. G. L. Kellogg, Phys. Rev. Lett. 73, 1833 (1994). See also the recent review by Kellogg in: Surf. Sci. Reports 21 (1/2), (1994).

    Article  ADS  Google Scholar 

  6. D. J. Trevor and C. E. D. Chidsey, J. Vac. Sci. Technol B 9, 964 (1991).

    Article  Google Scholar 

  7. J. de la Figuera, J. E. Pristo, O. Ocal, and R. Miranda, Solid State Commun. 89, 815 (1994).

    Article  Google Scholar 

  8. J.-M. Wen, S.-L. Chang, J. W. Burnett, J. W. Evans, and P. A. Thiel, Phys. Rev. Lett. 73, 2591 (1994).

    Article  ADS  Google Scholar 

  9. K. Morgenstern, G. Rosenfeld, B. Poelsema, and G. Comsa, Phys. Rev. Lett. 74, 2058 (1995).

    Article  ADS  Google Scholar 

  10. W. W. Pai, A. K. Swan, J. F. Wendelken, and Z. Y. Zhang, to be published.

    Google Scholar 

  11. D. R. Peale and B. H. Cooper, J. Vac. Sci. Technol. A 10, 2210 (1991).

    Article  ADS  Google Scholar 

  12. C.F. Walters, Z. Y. Zhang, D. M. Zehner, and E. W. Plummer, presented at the 55th Conference on Physical Electronics, Flagstaf, Arizona, June 12–14, 1995; and to be published.

    Google Scholar 

  13. W. F. Egelhoff, Jr. and D. A. Steigerwald, J. Vac. Sci. Technol. A 7, 2167 (1989).

    Article  ADS  Google Scholar 

  14. M. Copel, M. C. Reuter, E. Kaxiras, and R. M. Tromp, Phys. Rev. Lett. 63, 632 (1989).

    Article  ADS  Google Scholar 

  15. H. A. van der Vegt, H. M. van Pinxteren, M. Lohmeier, E. Vlieg, and J. M. C. Thornton, Phys. Rev. Lett. 68, 3335 (1992).

    Article  ADS  Google Scholar 

  16. M. Horn-von Hoegen, B. H. Muller, A. Al-Falou, and M. Henzler, Phys. Rev. Lett. 71, 3170 (1993).

    Article  ADS  Google Scholar 

  17. S. Esch, M. Hohage, Th. Michely, and G. Comsa, Phys. Rev. Lett. 72, 518 (1994).

    Article  ADS  Google Scholar 

  18. J. Vrijmoeth, H. A. van der Vegt, J. A. Meyer, E. Vlieg, and R. J. Behm, Phys. Rev. Lett. 72, 3843 (1994).

    Article  ADS  Google Scholar 

  19. M. Copel and R. M. Tromp, Phys. Rev. Lett. 72, 1236 (1994); 76, 2603 (1996).

    Article  ADS  Google Scholar 

  20. J. E. Vasek, Z. Y. Zhang, C. T. Salling, and M. G. Lagally, Phys. Rev. B 51, 17207 (1995).

    Article  ADS  Google Scholar 

  21. P. J. Feibelman, Phys. Rev. Lett. 58, 2766 (1987).

    Article  ADS  Google Scholar 

  22. T. Yamasaki, T. Uda, and K. Terakura, Phys. Rev. Lett. 76, 2949 (1996).

    Article  ADS  Google Scholar 

  23. A. F. Voter, Phys. Rev. B 34, 6819 (1986).

    Article  ADS  Google Scholar 

  24. C. L. Liu, J. M. Cohen, J. B. Adams, and A. F. Voter, Surf. Sci. 253, 334 (1991).

    Article  ADS  Google Scholar 

  25. C. L. Liu and J. B. Adams, Surf. Sci. 268, 73 (1992); Surf. Sci. 316, 294 (1994).

    Article  ADS  Google Scholar 

  26. C. L. Liu, Int. J. Mod. Phys. B 9, 1 (1995).

    Article  ADS  Google Scholar 

  27. S. D. Liu, Z. Y. Zhang, J. K. Norskov, and H. Metiu, Surf. Sci. 321, 161 (1994).

    Article  ADS  Google Scholar 

  28. Z. P. Shi, Z. Y. Zhang, A. K. Swan, and J. F. Wendelken, Phys. Rev. Lett. 76, 4927 (1996).

    Article  ADS  Google Scholar 

  29. D. S. Sholl and R. T. Skodje, Phys. Rev. Lett. 75, 3158 (1995).

    Article  ADS  Google Scholar 

  30. J. C. Hamilton, M. S. Daw, and S. M. Foiles, Phys. Rev. Lett. 74, 2760 (1995).

    Article  ADS  Google Scholar 

  31. C. DeW. Van Sielen, Phys. Rev. Lett. 75, 1574 (1995).

    Article  ADS  Google Scholar 

  32. S. V. Khare, N. C. Bartelt, and T. L. Einstein, Phys. Rev. Lett. 75, 2148 (1995).

    Article  ADS  Google Scholar 

  33. K. Haug, Z. Y. Zhang, D. T. John, C. F. Walters, D. M. Zehner, and E. W. Plummer, (submitted to Phys. Rev. Lett.) (1996).

    Google Scholar 

  34. R. Stumpf, Phys. Rev. B 53, R4253 (1996); and to be published.

    Article  ADS  Google Scholar 

  35. M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984).

    Article  ADS  Google Scholar 

  36. S. E. Wonchoba, W. H. Hu, and D.G. Truhlar, Phys. Rev. B 51, 9985 (1995).

    Article  ADS  Google Scholar 

  37. G. L. Kellogg, Surf. Sci. 359, 237 (1996).

    Article  ADS  Google Scholar 

  38. J. A. Venables, Philos. Mag. 27, 697 (1973).

    Article  ADS  Google Scholar 

  39. J. A. Venables, G. D. T. Spiller, and M. Hanbucken, Rep. Prog. Phys. 16, 399 (1984).

    Article  ADS  Google Scholar 

  40. J. K. Zuo, J. F. Wendelken, A. Durr, and C. L. Liu, Phys. Rev. Lett. 72, 3064 (1994).

    Article  ADS  Google Scholar 

  41. J. Stroscio and D. Pierce, Phys. Rev. B 49, 8522 (1994).

    Article  ADS  Google Scholar 

  42. S. Günther, E. Kopatzki, M. C. Bartelt, J. W. Evans, and R. J. Behm, Phys. Rev. Lett. 73, 553 (1994).

    Article  ADS  Google Scholar 

  43. M.C. Bartelt, L. S. Perkins, and J.W Evans, Surf. Sci. Lett. 344, L1193 (1995).

    Article  Google Scholar 

  44. A. K. Swan, Z. P. Shi, Z. Y. Zhang, and J. F. Wendelken, (submitted) (1996).

    Google Scholar 

  45. R. T. Tung and W. R. Graham, Surf. Sci. 97, 73 (1980).

    Article  ADS  Google Scholar 

  46. R. Casanova and T. T. Tsong, Surf. Sci. 94, L179 (1980).

    Article  ADS  Google Scholar 

  47. K. Haug and H. Metiu, J. Chem. Phys. 94, 3251 (1991).

    Article  ADS  Google Scholar 

  48. C. Lee, G. T. Barkema, M. Breeman, A. Pasquarello, and R. Car, Surf. Sci. Lett. 306, L575 (1994).

    Article  Google Scholar 

  49. S. Oppo, V. Fiorentini, and M. Scheffler, Phys. Rev. Lett. 71, 2437 (1993).

    Article  ADS  Google Scholar 

  50. Z. Y. Zhang and M. G. Lagally, Phys. Rev. Lett. 72, 693 (1994).

    Article  ADS  Google Scholar 

  51. S. Liu, L. Bonig, J. Detch, and H. Metiu, Phys. Rev. Lett. 74, 4495 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhang, Z., Shi, ZP., Haug, K. (1997). Diffusion and Dissociation of Two-Dimensional Islands on FCC Metal (100) Surfaces. In: Tringides, M.C. (eds) Surface Diffusion. NATO ASI Series, vol 360. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0262-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0262-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0264-1

  • Online ISBN: 978-1-4899-0262-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics