Diffusion and Dissociation of Two-Dimensional Islands on FCC Metal (100) Surfaces

  • Zhenyu Zhang
  • Zhu-Pei Shi
  • Kenneth Haug
Part of the NATO ASI Series book series (NSSB, volume 360)


The mobility and the stability of small two-dimensional islands on a substrate are basic issues of surface science and thin-film growth. In this article, we present our main results from a series of theoretical studies of island diffusion and dissociation on several fcc metal (100) surfaces, with and without the effects of hydrogen as surface impurities. We found that a collective atomic process, shearing of a dimer belonging to a compact island, in many cases provides the most effective pathway for island diffusion. Consideration of this novel atomic process leads to the possibility of observing a new set of critical island sizes in dynamical island growth or coarsening. When H is introduced into the Ni system, the mobility of adatoms and islands of all sizes are enhanced. This conclusion suggests that H will function as an anti-surfactant in Ni(100) homoepitaxy.


Island Size Embed Atom Method Adatom Diffusion Island Edge Corner Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Stolt, W. R. Graham, and G. Ehrlich, J. Chem. Phys. 65, 3206 (1976).ADSCrossRefGoogle Scholar
  2. 2.
    D. W. Bassett, J. Phys. C (Solid State Phys.) 9, 2491 (1976).ADSCrossRefGoogle Scholar
  3. 3.
    T. T. Tsong and R. Casanova, Phys. Rev. B 22, 4632 (1980).ADSCrossRefGoogle Scholar
  4. 4.
    S. C. Wang and G. Ehrlich, Surf. Sci. 239, 301 (1990).ADSCrossRefGoogle Scholar
  5. 5.
    G. L. Kellogg, Phys. Rev. Lett. 73, 1833 (1994). See also the recent review by Kellogg in: Surf. Sci. Reports 21 (1/2), (1994).ADSCrossRefGoogle Scholar
  6. 6.
    D. J. Trevor and C. E. D. Chidsey, J. Vac. Sci. Technol B 9, 964 (1991).CrossRefGoogle Scholar
  7. 7.
    J. de la Figuera, J. E. Pristo, O. Ocal, and R. Miranda, Solid State Commun. 89, 815 (1994).CrossRefGoogle Scholar
  8. 8.
    J.-M. Wen, S.-L. Chang, J. W. Burnett, J. W. Evans, and P. A. Thiel, Phys. Rev. Lett. 73, 2591 (1994).ADSCrossRefGoogle Scholar
  9. 9.
    K. Morgenstern, G. Rosenfeld, B. Poelsema, and G. Comsa, Phys. Rev. Lett. 74, 2058 (1995).ADSCrossRefGoogle Scholar
  10. 10.
    W. W. Pai, A. K. Swan, J. F. Wendelken, and Z. Y. Zhang, to be published.Google Scholar
  11. 11.
    D. R. Peale and B. H. Cooper, J. Vac. Sci. Technol. A 10, 2210 (1991).ADSCrossRefGoogle Scholar
  12. 12.
    C.F. Walters, Z. Y. Zhang, D. M. Zehner, and E. W. Plummer, presented at the 55th Conference on Physical Electronics, Flagstaf, Arizona, June 12–14, 1995; and to be published.Google Scholar
  13. 13.
    W. F. Egelhoff, Jr. and D. A. Steigerwald, J. Vac. Sci. Technol. A 7, 2167 (1989).ADSCrossRefGoogle Scholar
  14. 14.
    M. Copel, M. C. Reuter, E. Kaxiras, and R. M. Tromp, Phys. Rev. Lett. 63, 632 (1989).ADSCrossRefGoogle Scholar
  15. 15.
    H. A. van der Vegt, H. M. van Pinxteren, M. Lohmeier, E. Vlieg, and J. M. C. Thornton, Phys. Rev. Lett. 68, 3335 (1992).ADSCrossRefGoogle Scholar
  16. 16.
    M. Horn-von Hoegen, B. H. Muller, A. Al-Falou, and M. Henzler, Phys. Rev. Lett. 71, 3170 (1993).ADSCrossRefGoogle Scholar
  17. 17.
    S. Esch, M. Hohage, Th. Michely, and G. Comsa, Phys. Rev. Lett. 72, 518 (1994).ADSCrossRefGoogle Scholar
  18. 18.
    J. Vrijmoeth, H. A. van der Vegt, J. A. Meyer, E. Vlieg, and R. J. Behm, Phys. Rev. Lett. 72, 3843 (1994).ADSCrossRefGoogle Scholar
  19. 19.
    M. Copel and R. M. Tromp, Phys. Rev. Lett. 72, 1236 (1994); 76, 2603 (1996).ADSCrossRefGoogle Scholar
  20. 20.
    J. E. Vasek, Z. Y. Zhang, C. T. Salling, and M. G. Lagally, Phys. Rev. B 51, 17207 (1995).ADSCrossRefGoogle Scholar
  21. 21.
    P. J. Feibelman, Phys. Rev. Lett. 58, 2766 (1987).ADSCrossRefGoogle Scholar
  22. 22.
    T. Yamasaki, T. Uda, and K. Terakura, Phys. Rev. Lett. 76, 2949 (1996).ADSCrossRefGoogle Scholar
  23. 23.
    A. F. Voter, Phys. Rev. B 34, 6819 (1986).ADSCrossRefGoogle Scholar
  24. 24.
    C. L. Liu, J. M. Cohen, J. B. Adams, and A. F. Voter, Surf. Sci. 253, 334 (1991).ADSCrossRefGoogle Scholar
  25. C. L. Liu and J. B. Adams, Surf. Sci. 268, 73 (1992); Surf. Sci. 316, 294 (1994).ADSCrossRefGoogle Scholar
  26. C. L. Liu, Int. J. Mod. Phys. B 9, 1 (1995).ADSCrossRefGoogle Scholar
  27. 25.
    S. D. Liu, Z. Y. Zhang, J. K. Norskov, and H. Metiu, Surf. Sci. 321, 161 (1994).ADSCrossRefGoogle Scholar
  28. 26.
    Z. P. Shi, Z. Y. Zhang, A. K. Swan, and J. F. Wendelken, Phys. Rev. Lett. 76, 4927 (1996).ADSCrossRefGoogle Scholar
  29. 27.
    D. S. Sholl and R. T. Skodje, Phys. Rev. Lett. 75, 3158 (1995).ADSCrossRefGoogle Scholar
  30. 28.
    J. C. Hamilton, M. S. Daw, and S. M. Foiles, Phys. Rev. Lett. 74, 2760 (1995).ADSCrossRefGoogle Scholar
  31. 29.
    C. DeW. Van Sielen, Phys. Rev. Lett. 75, 1574 (1995).ADSCrossRefGoogle Scholar
  32. 30.
    S. V. Khare, N. C. Bartelt, and T. L. Einstein, Phys. Rev. Lett. 75, 2148 (1995).ADSCrossRefGoogle Scholar
  33. 31.
    K. Haug, Z. Y. Zhang, D. T. John, C. F. Walters, D. M. Zehner, and E. W. Plummer, (submitted to Phys. Rev. Lett.) (1996).Google Scholar
  34. 32.
    R. Stumpf, Phys. Rev. B 53, R4253 (1996); and to be published.ADSCrossRefGoogle Scholar
  35. 33.
    M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984).ADSCrossRefGoogle Scholar
  36. 34.
    S. E. Wonchoba, W. H. Hu, and D.G. Truhlar, Phys. Rev. B 51, 9985 (1995).ADSCrossRefGoogle Scholar
  37. 35.
    G. L. Kellogg, Surf. Sci. 359, 237 (1996).ADSCrossRefGoogle Scholar
  38. 36.
    J. A. Venables, Philos. Mag. 27, 697 (1973).ADSCrossRefGoogle Scholar
  39. J. A. Venables, G. D. T. Spiller, and M. Hanbucken, Rep. Prog. Phys. 16, 399 (1984).ADSCrossRefGoogle Scholar
  40. 37.
    J. K. Zuo, J. F. Wendelken, A. Durr, and C. L. Liu, Phys. Rev. Lett. 72, 3064 (1994).ADSCrossRefGoogle Scholar
  41. 38.
    J. Stroscio and D. Pierce, Phys. Rev. B 49, 8522 (1994).ADSCrossRefGoogle Scholar
  42. 39.
    S. Günther, E. Kopatzki, M. C. Bartelt, J. W. Evans, and R. J. Behm, Phys. Rev. Lett. 73, 553 (1994).ADSCrossRefGoogle Scholar
  43. 40.
    M.C. Bartelt, L. S. Perkins, and J.W Evans, Surf. Sci. Lett. 344, L1193 (1995).CrossRefGoogle Scholar
  44. 41.
    A. K. Swan, Z. P. Shi, Z. Y. Zhang, and J. F. Wendelken, (submitted) (1996).Google Scholar
  45. 42.
    R. T. Tung and W. R. Graham, Surf. Sci. 97, 73 (1980).ADSCrossRefGoogle Scholar
  46. 43.
    R. Casanova and T. T. Tsong, Surf. Sci. 94, L179 (1980).ADSCrossRefGoogle Scholar
  47. 44.
    K. Haug and H. Metiu, J. Chem. Phys. 94, 3251 (1991).ADSCrossRefGoogle Scholar
  48. 45.
    C. Lee, G. T. Barkema, M. Breeman, A. Pasquarello, and R. Car, Surf. Sci. Lett. 306, L575 (1994).CrossRefGoogle Scholar
  49. 46.
    S. Oppo, V. Fiorentini, and M. Scheffler, Phys. Rev. Lett. 71, 2437 (1993).ADSCrossRefGoogle Scholar
  50. 47.
    Z. Y. Zhang and M. G. Lagally, Phys. Rev. Lett. 72, 693 (1994).ADSCrossRefGoogle Scholar
  51. 48.
    S. Liu, L. Bonig, J. Detch, and H. Metiu, Phys. Rev. Lett. 74, 4495 (1995).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Zhenyu Zhang
    • 1
  • Zhu-Pei Shi
    • 1
  • Kenneth Haug
    • 2
  1. 1.Solid State DivisionOak Ridge National LaboratoryOak RidgeUSA
  2. 2.Department of ChemistryLehigh UniversityBethlehemUSA

Personalised recommendations