Surface Studies of Chemically Vapour Deposited Silicon Films Using Scanning Force Microscopy

  • C. Flueraru
  • C. Cobianu
  • P. Cosmin
  • D. Dascalu
Part of the NATO ASI Series book series (NSSB, volume 360)


A new method for surface diffusion characterization is presented. The measurements conditions for roughness were analysed and the importance of the applied force was proven. The quantitative measurements of friction force versus applied force are presented. The connection between the average friction coefficient and the roughness surface was experimentally demonstrated.


Friction Coefficient Friction Force Applied Force Deposition Temperature Roughness Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Binning, H. Rohrer, and C. Gerber, Phys. Rev.Lett., 49, 57 (1982).ADSCrossRefGoogle Scholar
  2. 2.
    G. Binning, C.F. Quate, and C. Gerber, Phys. Rev. Lett., 56, 930 (1986).ADSCrossRefGoogle Scholar
  3. 3.
    An American National Standard, ANSI/ASME B46, 1 (1985).Google Scholar
  4. 4.
    I.J. Malik, S. Pirooz, L.W. Shive, A. J. Davenport, C.M. Vitus, J. Electrochem. Soc., 140, L75 (1993).CrossRefGoogle Scholar
  5. 5.
    L. Spanos, and E. Airene, J.Vac.Sci. Technolog., A12, 2646 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    K.O. van der Werf, C.AJ. Putman, BG. de Grooth, F.B. Segerink, E.H. Schipper, N.F. van Hülst, J. Greve, Rev.Sci.Instrum., 64, 2892 (1993).ADSCrossRefGoogle Scholar
  7. 7.
    C.A.J.Putman, PhD Theses University of Twente, Enschede, The Netherlands, 1994.Google Scholar
  8. 8.
    C.Flueraru, Technical Report F1-1996 — Institute of Microtechnology, Bucharest (1996).Google Scholar
  9. 9.
    C. Ascoli, F. Dinelli, C. Frediani, D. Petracchi, M. Salermo, M. Labardi, M. Allegrini, F. Fuso, J. Vac.Sci. Technology, B12, 1642 (1994).ADSGoogle Scholar
  10. 10.
    R.M. Overney, E. Meyer, J. Frommer, D. Brodbeck, R. Luthi, L. Howald, H.J. Guntherodt, M. Fujihiro, H. Takano, Y. Gotoh, Nature, 359, 133 (1992).ADSCrossRefGoogle Scholar
  11. 11.
    Park Scientific Instruments Inc., Sunnyvale, CA.Google Scholar
  12. 12.
    M.Yasutake, S.Wakiyama, Y. Kato, J.Vac.Sci.Technolog., B12, 1572(1994).Google Scholar
  13. 13.
    E. Ibok and S. Garg, J.Electrochem. Soc., 140, 2927 (1993).CrossRefGoogle Scholar
  14. 14.
    R. Bisaro, J. Magarino, N. Proust, K. Zellamo, J.Appl. Phys., 59, 1167 (1986).ADSCrossRefGoogle Scholar
  15. 15.
    P. Joubert, B. Loisel, Y. Chousan, L. Haji, J.Electrochem. Soc., 134, 2541 (1987).CrossRefGoogle Scholar
  16. 16.
    D. Meakin, K. Papadopoulou, S. Friligkos, S. Stoemenos, P. Migliorato, N.A. Economou, J.Appl. Phys., 61, 5031 (1987).ADSCrossRefGoogle Scholar
  17. 17.
    J.A. Verrables, Philos.Mag, 27, 697 (1973).ADSCrossRefGoogle Scholar
  18. 18.
    D. Kashchiev, J.Cryst.Growth, 40, 29 (1977).ADSCrossRefGoogle Scholar
  19. 19.
    A.T. Voutsas, M.K. Hatalis, J.Electrochem.Soc., 140, 282 (1993).CrossRefGoogle Scholar
  20. 20.
    C.Cobianu, C.Flueraru, in progress.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • C. Flueraru
    • 1
  • C. Cobianu
    • 1
  • P. Cosmin
    • 1
  • D. Dascalu
    • 1
  1. 1.Institute of MicrotechnologyBucharestRomania

Personalised recommendations