Initially Separated A + B → 0 Reaction-Diffusion Systems with Arbitrary Initial Parameters

  • Zbigniew Koza
Part of the NATO ASI Series book series (NSSB, volume 360)


The phenomenon of diffusion is often accompanied by other physical processes. The interplay between them may lead to the situation in which the evolution of the system significantly differs from that expected when its dynamics is governed only by diffusion. An example of such a situation which has recently attracted a lot of interest is the so called A + B → 0 reaction-diffusion process in which particles of two different species, A and B, diffuse and, at the same time, may undergo a chemical reaction whose product is chemically inert. The applications of the theory of the A + B → 0 systems, however, are not restricted exclusively to chemistry. One might as well think of A’s and B’s as of Schottky’s and Frenkl’s point defects, adatoms in the second monolayer and vacant absorption sites in the first monolayer,[1] electrons and holes, or magnetic monopoles and antimonopoles in the early Universe.[2]


Reaction Zone Reaction Layer Reaction Front Magnetic Monopole Free Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. G. Naumovets, M. V. Paliy and Yu. S. Vedula, in Diffusion Processes: Experiment, Theory and Simulations, Andrzej Pȩkalski (Ed.), Springer-Verlag, Berlin (1994).Google Scholar
  2. 2.
    D. Toussaint and F. Wilczek, J. Chem. Phys. 78, 2642 (1983).ADSCrossRefGoogle Scholar
  3. 3.
    M. Bramson and J. L. Lebowitz, Phys. Rev. Lett. 61, 2397 (1988).ADSCrossRefGoogle Scholar
  4. 4.
    A. A. Ovchinnikov and Ya. B. Zeldowich, Chem. Phys. 28, 215 (1978).CrossRefGoogle Scholar
  5. 5.
    L. Gálfi and Z. Rácz, Phys. Rev. A 38, 3151 (1988).ADSCrossRefGoogle Scholar
  6. 6.
    Proceedings of the NIH Meeting on Models of Non-Classical Reaction Rates, J. Stat. Phys. 65, No. 5/6 (1991.Google Scholar
  7. 7.
    S. Havlin, M. Araujo, Y. Lereach, H. Larralde, A. Shehter, H. E. Stanley, P. Trunfio and B. Vilensky, Physica A 221, 1 (1995).ADSCrossRefGoogle Scholar
  8. 8.
    H. Taitelbaum, Y. E. L. Koo, S. Havlin, R. Kopelman and G. H. Weiss, Phys. Rev. A 46, 2151 (1992).ADSCrossRefGoogle Scholar
  9. 9.
    Y. L. Koo and R. Kopelman, J. Stat. Phys. 65, 893 (1991).ADSCrossRefGoogle Scholar
  10. 10.
    H. Taitelbaum, S. Havlin, J. E. Kiefer, B. Trus and G. H. Weiss, J. Stat. Phys. 65, 873 (1991).ADSCrossRefGoogle Scholar
  11. 11.
    Z. Koza, J. Stat. Phys. 85, 179 (1996).MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Z. Koza and H. Taitelbaum, Phys. Rev. E 54, R1040 (1996).ADSCrossRefGoogle Scholar
  13. 13.
    S. Cornell and M. Droz, Phys. Rev. Lett. 70, 3824 (1993).ADSCrossRefGoogle Scholar
  14. 14.
    B. P. Lee and J. Cardy, Phys. Rev. E 50, R3287 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    M. Howard and J. Cardy, J. Phys. A: Math Gen 28, 3599 (1995).MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    H. Larralde, M. Araujo, S. Havlin and H. E. Stanley, Phys. Rev. A 46, R6121 (1992).ADSCrossRefGoogle Scholar
  17. 17.
    S. J. Cornell, Phys. Rev. E 51, 4055 (1995).ADSCrossRefGoogle Scholar
  18. 18.
    P. L. Krapivsky, Phys. Rev. E 51, 4774 (1995).ADSCrossRefGoogle Scholar
  19. 19.
    E. Ben-Naim and S. Redner, J. Phys. A: Math. Gen. 28, L575 (1992).CrossRefGoogle Scholar
  20. 20.
    Z. Jiang and C. Ebner, Phys. Rev. A 42 7483, (1990).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Zbigniew Koza
    • 1
  1. 1.Institute of Theoretical PhysicsUniversity of WrocławPoland

Personalised recommendations