Surface Diffusion pp 667-672 | Cite as
Trapping Effects in Surface Diffusion
Chapter
Abstract
We consider the classical problem of particles diffusing on a lattice that contains a random distribution of static traps of low concentration. We use the known Donsker-Varadhan analytical solutions, which we modify for 2-D lattices, to get good agreement with very elaborate numerical results for the survival probability at finite times. This is done through the distribution of the number of distinct sites visited in the absence of traps. Our final formula is also of exponential form, in which the constants are derived from the numerical simulation data.
Keywords
Random Walk Survival Probability Finite Time Exponential Form Static Trap
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.M.D. Donsker and S.R.S. Varadhan, “Asymptotics for the Wiener sausage”, Commun. Pure Appl. Math. 28, 525 (1975).MathSciNetMATHCrossRefGoogle Scholar
- 2.F. den Hollander and G.H. Weiss, “Aspects of trapping in transport processes”, in: Contemporary Problems in Statistical Physics G.H. Weiss, ed., SIAM, Philadelphia (1994).Google Scholar
- 3.J.K. Anlauf, “Asymptotically exact solution of the one-dimensional trapping problem”, Phys. Rev. Lett. 52, 1845 (1984).ADSCrossRefGoogle Scholar
- 4.P. Grassberger and I. Procaccia, “The long time properties of diffusion in a medium with static traps”, J. Chem. Phys. 77, 6281 (1982).ADSCrossRefGoogle Scholar
- 5.H.B. Rosenstock, “Random walks on lattices with traps”, J. Math. Phys., 11, 487 (1970).ADSCrossRefGoogle Scholar
- 6.G. Zumofen and A. Blumen, “Random walk studies of excitation trapping in crystals”, Chem. Phys. Lett. 88, 63 (1982).ADSCrossRefGoogle Scholar
- 7.R.F. Kayser and J.B. Hubbard, “Diffusion in a medium with a random distribution of static traps”, Phys. Rev. Lett. 51, 79 (1983).MathSciNetADSCrossRefGoogle Scholar
- 8.D.C. Torney, “Variance of the range of a random walk”, J. Stat. Phys. 44, 49 (1986).ADSMATHCrossRefGoogle Scholar
- 9.T.C. Lubensky, “Fluctuations in random walks with random traps”, Phys. Rev. A 30, 2657 (1984).MathSciNetADSCrossRefGoogle Scholar
- 10.S. Havlin, M. Dishon, J.E. Kiefer, and G.H. Weiss, “Trapping of random walks in two and three dimensions”, Phys. Rev. Lett. 53, 407 (1984).ADSCrossRefGoogle Scholar
- 11.J.K. Anlauf, PhD dissertation (1988).Google Scholar
Copyright information
© Springer Science+Business Media New York 1997