Atomic Mobility of Ag and Fe on the Ag(100) Surface

  • M. H. Langelaar
  • D. O. Boerma
Part of the NATO ASI Series book series (NSSB, volume 360)

Abstract

In this paper we present a low-energy ion scattering (LEIS) study of the mobility of Ag and Fe adatoms on the Ag(100) surface. We determined the onset temperature for Ag adatom diffusion on Ag(100) to be 160(5) K. From this value we estimated the activation energy barrier for self-diffusion on Ag(100) to be 0.40(5) eV. Single Fe adatoms on the Ag(100) surface were found to exchange site with Ag atoms from the first layer, starting at a temperature of 130(10) K.

Keywords

Scanning Tunneling Microscopy Image Step Edge Activation Energy Barrier Direct Scattering Adatom Mobility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Canepa, E. Magnano, A. Campora, P. Cantini, M. Salvietti, and L. Mattera, Surf. Sci. 352-354, 36 (1996).ADSCrossRefGoogle Scholar
  2. 2.
    B.D. Yu and M. Scheffler, Phys. Rev. Lett. 77, 1095 (1996).ADSCrossRefGoogle Scholar
  3. 3.
    M.I. Haftel and M. Rosen, private communication.Google Scholar
  4. 4.
    G. Boisvert, L.J. Lewis, M.J. Puska, and R.M. Nieminen, Phys. Rev. B 52, 9078 (1995).ADSCrossRefGoogle Scholar
  5. 5.
    C.L. Liu, J.M. Cohen, J.B. Adams, and A.F. Voter, Surf. Sci. 253, 334 (1991).ADSCrossRefGoogle Scholar
  6. 6.
    P. Stoltze, J. Phys. Condens. Matter 6, 9495 (1994).ADSCrossRefGoogle Scholar
  7. 7.
    T.T. Tsong, Rep. Prog. Phys. 51, 759 (1988).ADSCrossRefGoogle Scholar
  8. 8.
    G. Ehrlich, Appl Phys. A 55, 403 (1992).ADSCrossRefGoogle Scholar
  9. 9.
    Th. Michely, K.H. Besocke, and G. Comsa, Surf. Sci. Lett. 230, L135 (1990).CrossRefGoogle Scholar
  10. Th. Michely and G. Comsa, Phys. Rev. B 44, 8411 (1991).ADSCrossRefGoogle Scholar
  11. 10.
    M. Breeman and D.O. Boerma, Surf. Sci. 269/270, 224 (1992).ADSCrossRefGoogle Scholar
  12. M. Breeman and D.O. Boerma, Surf. Sci. 278, L110 (1992).ADSCrossRefGoogle Scholar
  13. 11.
    M.H. Langelaar, M. Breeman, and D.O. Boerma, Surf. Sci. 352-354, 597 (1996).ADSCrossRefGoogle Scholar
  14. 12.
    M.T. Robinson and I.M. Torrens, Phys Rev. B 9, 5008 (1974).ADSCrossRefGoogle Scholar
  15. 13.
    W. Schilling, G. Burger, K. Isebeck, and H. Wenzl, in: Vacancies and Interstitials in Metals, A. Seeger, D. Schumacher, W. Schilling, and J. Diehl, eds. (North-Holland, Amsterdam, 1970) p. 225.Google Scholar
  16. 14.
    M.H. Langelaar, M. Breeman, and D.O. Boerma, to be published.Google Scholar
  17. 15.
    C.-M. Zhang, M.C. Bartelt, J.-M. Wen, C.J. Jenks, J.W. Evans, and P.A. Thiel, J. Crystal Growth, in press.Google Scholar
  18. 16.
    Y. Suzuki, H. Kikuchi, and N. Koshizuka, Jpn. J. Appl. Phys. 27, L1175 (1988).ADSCrossRefGoogle Scholar
  19. 17.
    W.C. Elliott, P.F. Micelli, T. Tse, and P.W. Stephens, submitted to Phys. Rev. B..Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • M. H. Langelaar
    • 1
  • D. O. Boerma
    • 1
  1. 1.Nuclear Solid State Physics, Materials Science CentreGroningen UniversityGroningenThe Netherlands

Personalised recommendations