Anisotropy of Surface Diffusion Determined by Study of Ordering Kinetics: Oxygen on (011) Molybdenum

  • A. G. Fedorus
  • V. F. Koval
Part of the NATO ASI Series book series (NSSB, volume 360)


Kinetics of ordering in one-firth-monolayer oxygen film adsorbed on Mo(011) is studied to derive data on surface diffusion. Evolution of the c(2×2) domain average size occuring after upquench of the overlayer preliminarily deposited at low temperature is investigated by video LEED. The two-dimensional diffraction intensity profile is monitored in a wide range of times at different ordering temperatures and corresponding average domain sizes are calculated. Time dependence of the domain size fits the power law 〈L〉=At x +B with the growth exponent x=1/2 and the rate constant A dependent on ordering temperature. The growth exponent proves to be of the same value in any direction. However the domain growth rate is found to be different along the 〈011〉 and 〈001〉 axes. The diffusion coefficient D is considered to relate to A as D x A. The diffusion anisotropy ratio can be thus determined: D 011/D 001=0.45. This ratio turns out constant, independent of temperature, showing the equality of the activation energie E d =1.76 eV for the two directions. The results are discussed in comparison with the data on E d and model calculations of diffusion anisotropy obtained for the considered system in other works.


Surface Diffusion Diffusion Parameter Anisotropy Ratio Antiphase Boundary Distortion Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.G. Naumovets and Yu.S. Vedula, Surf. Sci. Rep. 4, 365 (1984).CrossRefGoogle Scholar
  2. 2.
    M.C. Tringides, in: The Chemical Physics of Solid Surfaces, D.A. King and D.P. Woodruff, eds., Elsevier Science, Amsterdam (1994).Google Scholar
  3. 3.
    M.C. Tringides and M.G. Lagally, in: Diffusion at Interfaces: Microscopic Conncepts, M. Grunze, H.J. Kruezer, and J.J. Werner, eds., Springer-Verlag, Berlin (1988).Google Scholar
  4. 4.
    M.C. Tringides, J.Chem.Phys. 92, 2077 (1990).ADSCrossRefGoogle Scholar
  5. 5.
    Y. Song and R. Gomer, Surf. Sci. 290, 1 (1993).ADSCrossRefGoogle Scholar
  6. 6.
    M.A. VanHove and S.Y. Tong, Phys. Rev. Lett. 35, 1092 (1975).ADSCrossRefGoogle Scholar
  7. 7.
    A.G. Fedoras, V.F. Koval, A.G. Naumovets, and O.A. Panchenko (in press).Google Scholar
  8. 8.
    I.M. Lifshitz, Zh.Eksp.Teor.Fiz. 42, 1354 (1962) [Sov.Phys.-JETP 15, 939 (1962)].Google Scholar
  9. 9.
    E. Bauer and H. Poppa, Surf. Sci. 127, 243 (1983).ADSCrossRefGoogle Scholar
  10. 10.
    V.I. Vatamanyuk, D.A. Gorodetskii, A.G. Kundzich, P.P. Lutsishin, Yu.P. Mel’nik, O.A. Panchenko, V.A. Usenko, and A.A. Yasko, Poverkhnost 1, 18 (1990).Google Scholar
  11. 11.
    M. Tringides and R. Gomer, Surf. Sci. 166, 419 (1986).ADSCrossRefGoogle Scholar
  12. 12.
    M. Tringides and R. Gomer, Surf. Sci. 155, 254 (1985).ADSCrossRefGoogle Scholar
  13. 13.
    T. Ala-Nissüa and S.C. Ying, Progr. Surf. Sci. 39, 227 (1992).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • A. G. Fedorus
    • 1
  • V. F. Koval
    • 1
  1. 1.Institute of PhysicsNational Academy of Sciences of UkraineKyiv-22Ukraine

Personalised recommendations