Quantum Diffusion Calculations of H on Ni(001) Using a Model Potential Based on First Principles Calculations

  • Thomas R. Mattsson
  • Göran Wahnström
Part of the NATO ASI Series book series (NSSB, volume 360)

Abstract

Hydrogen diffusion on metal surfaces has been a subject of great interest, both theoretically and experimentally, due to the pronounced quantum behavior at low temperatures.

Using the path-centroid formulation, we calculate the transition rate. At high temperatures our results are in quantitative agreement with experimental data and we find a marked change of the temperature-dependence for the diffusion constant around 60 K, indicating that quantum tunneling between the localized groundstates starts to dominate the diffusion process.

The model potential used is constructed by fitting to first principles calculations of the total energy using DFT together with the GGA-II approximation for the exchange-correlation functional. The model potential reproduces both the first principles and experimental data in a good way.

Keywords

Model Potential Hydrogen Diffusion Principle Calculation Bridge Site Imaginary Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. S. Lin and R. Gomer, Surf. Sci. 255, 41 (1991).ADSCrossRefGoogle Scholar
  2. 2.
    X. D. Zhu, A. Lee, A. Wong, and U. Linke, Phys. Rev. Lett. 68, 1862 (1992).ADSCrossRefGoogle Scholar
  3. 3.
    A. Lee, X. D. Zhu, L. Deng, and U. Linke, Phys. Rev. B 46, 15472 (1992).ADSCrossRefGoogle Scholar
  4. 4.
    G. X. Cao, A. Wong, and X. D. Zhu, Bulletin of the American Physical Society (APS, NY, 1996), Vol. 41, p. 421.Google Scholar
  5. 5.
    T. R. Mattsson, U. Engberg, and G. Wahnström, Phys. Rev. Lett. 71, 2615 (1993).ADSCrossRefGoogle Scholar
  6. 6.
    L. Y. Chen and S. C. Ying, Phys. Rev. Lett. 73, 700 (1994).ADSCrossRefGoogle Scholar
  7. 7.
    T. R. Mattsson and G. Wahnström, Phys. Rev. B 51, 1885 (1995).ADSCrossRefGoogle Scholar
  8. 8.
    S. E. Wonchoba, W.-P. Hu, and D. G. Truhlar, Phys. Rev. B 51, 9985 (1995).ADSCrossRefGoogle Scholar
  9. 9.
    S. E. Wonchoba and D. G. Truhlar, Phys. Rev. B 53, 11222 (1996).ADSCrossRefGoogle Scholar
  10. 10.
    S. M. Foiles, M. I. Baskes, C. F. Melius, and M. S. Daw, J. Less-Common Metals 130, 465 (1987).CrossRefGoogle Scholar
  11. 11.
    B. M. Rice, B. C. Garret, M. L. Koszykowski, S. M. Foiles, and M. S. Daw, J. Chem. Phys. 92, 775 (1990).ADSCrossRefGoogle Scholar
  12. 12.
    J. K. Nørskov, J. Chem. Phys. 90, 7461 (1989).ADSCrossRefGoogle Scholar
  13. 13.
    S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B 33, 7983 (1986).ADSCrossRefGoogle Scholar
  14. 14.
    T. R. Mattsson, L. Bengtsson, G. Wahnström, and B. Hammer, Applied Physics Report 96-39 (1996).Google Scholar
  15. 15.
    M. J. Gillan, Phys. Rev. Lett. 58, 563 (1987).ADSCrossRefGoogle Scholar
  16. 16.
    M. J. Gillan, J. Phys. C 20, 3621 (1987).ADSCrossRefGoogle Scholar
  17. 17.
    G. A. Voth, D. Chandler, and W. H. Miller, J. Chem. Phys. 91, 7749 (1989).ADSCrossRefGoogle Scholar
  18. 18.
    P. Pechukas, in Dynamics of molecular collisions, edited by W. Miller (Plenum Press, New York, 1976), Chap. 6, pp. 269–322.CrossRefGoogle Scholar
  19. 19.
    P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62, 251 (1990).ADSCrossRefGoogle Scholar
  20. 20.
    V. A. Benderskii, V. I. Goldanskii, and D. E. Makarov, Physics Reports 233, 195 (1993).ADSCrossRefGoogle Scholar
  21. 21.
    R. P. Feynman, Statistical Mechanics, Vol. 36 of Frontiers in Physics (Addison Wesley, New York, 1972).Google Scholar
  22. 22.
    M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids (Oxford University Press, Oxford, 1987).Google Scholar
  23. 23.
    C. P. Flynn and A. M. Stoneham, Phys. Rev. B 1, 3966 (1970).ADSCrossRefGoogle Scholar
  24. 24.
    D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, Oxford, 1987).Google Scholar
  25. 25.
    S. W. Rick and J. Doll, Surf. Sci. Lett. 302, L305 (1994).ADSCrossRefGoogle Scholar
  26. 26.
    D. R. Mullins, B. Roop, S. A. Costello, and J. M. White, Surf. Sci. 186, 67 (1987).ADSCrossRefGoogle Scholar
  27. 27.
    S. M. George, A. M. DeSantolo, and R. B. Hall, Surf. Sci. 159, L425 (1985).CrossRefGoogle Scholar
  28. 28.
    T. R. Mattsson and G. Wahnström, (to be published).Google Scholar
  29. 29.
    I. Stensgaard and F. Jakobsen, Phys. Rev. Lett. 54, 711 (1985).ADSCrossRefGoogle Scholar
  30. 30.
    J. Lapujoulade and K. S. Neil, Surf. Sci. 35, 288 (1973).ADSCrossRefGoogle Scholar
  31. 31.
    K. Christmann, O. Schober, G. Ertl, and M. Neumann, J. Chem. Phys. 60, 4528 (1974).ADSCrossRefGoogle Scholar
  32. 32.
    M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Thomas R. Mattsson
    • 1
  • Göran Wahnström
    • 1
  1. 1.Department of Applied PhysicsChalmers University of Technology and University of GöteborgGöteborgSweden

Personalised recommendations