Surface Diffusion pp 599-605 | Cite as
Vibrational Modes and Relative Stability of Stepped Surfaces of Copper
Abstract
We present a systematic study of the vibrational thermodynamic properties of vicinal surfaces of Cu(100) and Cu(111), in the harmonic approximation of lattice dynamics. The local vibrational density of states are evaluated using a real space Green’s function method with the force constant matrix generated from interaction potentials based on the Embedded Atom Method (EAM). Normal mode frequencies for the step-chain atoms are found to be softened the most, relative to corresponding bulk modes, along the direction perpendicular to the step-chain in the surface plane. The displacement patterns of surface atoms are determined for the low frequency surface modes. From free energy considerations, steps on Cu(211) and on Cu(511) are found to be more stable than their counterparts on Cu(331).
Keywords
Embed Atom Method Embed Atom Method Bulk Mode Displacement Pattern Vicinal SurfacePreview
Unable to display preview. Download preview PDF.
References
- 1.For a revew see, K. Wandelt, Surf. Sci. 215/252, 387 (1991).ADSCrossRefGoogle Scholar
- 2.For a review see, E.D. Williams, Surf. Sci. 299/300, 502 (1994).ADSCrossRefGoogle Scholar
- 3.Ronald Stumpf and Matthias Scheffler, Phys. Rev. Lett 72, 254 (1994).ADSCrossRefGoogle Scholar
- 4.Thomas Michely and George Comsa, Surf. Sci. 256, 217 (1991).ADSCrossRefGoogle Scholar
- 5.Peter J. Feibelman, Phys. Rev. B 52, 16845 (1995).ADSCrossRefGoogle Scholar
- 6.S. Papadia, M.C. Desjonquères, and D. Spanjaard, Phys. Rev. B 53, 4083 (1996).ADSCrossRefGoogle Scholar
- 7.J. Friedel, in: The Interaction of Radiation with Solids, Summer School (Mol, Belgium, 1963), Eds. R. Strumane et al. (North-Holland Publ. Co., Amsterdam, 1964); J. Friedel, in: Summer School on Radiation Damage (Ispra, Italy, 1962) (Gordon and Breach, NY).Google Scholar
- 8.P. Masri, G. Allan, and L. Dobrzynski, Jour. Physique 33, 85 (1972).CrossRefGoogle Scholar
- 9.G. Witte, J. Braun, A. Lock, and J.P. Toennies, Phys. Rev. B 52, 2165 (1995).ADSCrossRefGoogle Scholar
- 10.L. Yang and T.S. Rahman, Phys. Rev. Lett. 67, 2327 (1991).ADSCrossRefGoogle Scholar
- L. Yang, T.S. Rahman, and M.B. Daw, Phys. Rev. B 44, 13725 (1991).ADSCrossRefGoogle Scholar
- 11.Z.J. Tian and T.S. Rahman, Phys. Rev. B 47, 9751 (1993).ADSCrossRefGoogle Scholar
- 12.A. Kara, S. Durukanoglu, and T.S. Rahman, Phys. Rev. B 53, 15493 (1996).ADSCrossRefGoogle Scholar
- 13.A. Lock, J.P. Toennies, and G. Witte, J. Electron Spectrosc. 54/55, 309 (1990).CrossRefGoogle Scholar
- 14.M. C. Desjonquères and D. Spanjaard, Concepts in Surface Physics (Springer Series in Surface Science #30, 1993), pp:130.Google Scholar
- 15.S.Y. Wu, J. Cocks, and C.S. Jayanthi, Phys. Rev. B 49, 7957 (1994).ADSCrossRefGoogle Scholar
- 16.A. Kara, C.S. Jayanthi, S.Y. Wu, and F. Ercolessi, Phys. Rev. Lett. 72, 2223 (1994).ADSCrossRefGoogle Scholar
- 17.S.M. Foiles, M.I. Baskes, and M.S. Daw, Phys. Rev. B 33, 7983 (1986).ADSCrossRefGoogle Scholar
- M.S. Daw, S.M. Foiles, and M.I. Baskes, Mater. Sci. Rep. 9, 251 (1993).CrossRefGoogle Scholar
- 18.S. Durukanoglu, A. Kara, and Talat S. Rahman, to be published.Google Scholar
- 19.L. Dobrzynski, Ann. Phys. 4, 637 (1969).Google Scholar
- 20.G. Treglia and M. C. Desjonquères, J. Physique 46, 987 (1985).CrossRefGoogle Scholar