Vibrational Modes and Relative Stability of Stepped Surfaces of Copper

  • S. Durukanog̃lu
  • A. Kara
  • T. S. Rahman
Part of the NATO ASI Series book series (NSSB, volume 360)


We present a systematic study of the vibrational thermodynamic properties of vicinal surfaces of Cu(100) and Cu(111), in the harmonic approximation of lattice dynamics. The local vibrational density of states are evaluated using a real space Green’s function method with the force constant matrix generated from interaction potentials based on the Embedded Atom Method (EAM). Normal mode frequencies for the step-chain atoms are found to be softened the most, relative to corresponding bulk modes, along the direction perpendicular to the step-chain in the surface plane. The displacement patterns of surface atoms are determined for the low frequency surface modes. From free energy considerations, steps on Cu(211) and on Cu(511) are found to be more stable than their counterparts on Cu(331).


Embed Atom Method Embed Atom Method Bulk Mode Displacement Pattern Vicinal Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a revew see, K. Wandelt, Surf. Sci. 215/252, 387 (1991).ADSCrossRefGoogle Scholar
  2. 2.
    For a review see, E.D. Williams, Surf. Sci. 299/300, 502 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    Ronald Stumpf and Matthias Scheffler, Phys. Rev. Lett 72, 254 (1994).ADSCrossRefGoogle Scholar
  4. 4.
    Thomas Michely and George Comsa, Surf. Sci. 256, 217 (1991).ADSCrossRefGoogle Scholar
  5. 5.
    Peter J. Feibelman, Phys. Rev. B 52, 16845 (1995).ADSCrossRefGoogle Scholar
  6. 6.
    S. Papadia, M.C. Desjonquères, and D. Spanjaard, Phys. Rev. B 53, 4083 (1996).ADSCrossRefGoogle Scholar
  7. 7.
    J. Friedel, in: The Interaction of Radiation with Solids, Summer School (Mol, Belgium, 1963), Eds. R. Strumane et al. (North-Holland Publ. Co., Amsterdam, 1964); J. Friedel, in: Summer School on Radiation Damage (Ispra, Italy, 1962) (Gordon and Breach, NY).Google Scholar
  8. 8.
    P. Masri, G. Allan, and L. Dobrzynski, Jour. Physique 33, 85 (1972).CrossRefGoogle Scholar
  9. 9.
    G. Witte, J. Braun, A. Lock, and J.P. Toennies, Phys. Rev. B 52, 2165 (1995).ADSCrossRefGoogle Scholar
  10. 10.
    L. Yang and T.S. Rahman, Phys. Rev. Lett. 67, 2327 (1991).ADSCrossRefGoogle Scholar
  11. L. Yang, T.S. Rahman, and M.B. Daw, Phys. Rev. B 44, 13725 (1991).ADSCrossRefGoogle Scholar
  12. 11.
    Z.J. Tian and T.S. Rahman, Phys. Rev. B 47, 9751 (1993).ADSCrossRefGoogle Scholar
  13. 12.
    A. Kara, S. Durukanoglu, and T.S. Rahman, Phys. Rev. B 53, 15493 (1996).ADSCrossRefGoogle Scholar
  14. 13.
    A. Lock, J.P. Toennies, and G. Witte, J. Electron Spectrosc. 54/55, 309 (1990).CrossRefGoogle Scholar
  15. 14.
    M. C. Desjonquères and D. Spanjaard, Concepts in Surface Physics (Springer Series in Surface Science #30, 1993), pp:130.Google Scholar
  16. 15.
    S.Y. Wu, J. Cocks, and C.S. Jayanthi, Phys. Rev. B 49, 7957 (1994).ADSCrossRefGoogle Scholar
  17. 16.
    A. Kara, C.S. Jayanthi, S.Y. Wu, and F. Ercolessi, Phys. Rev. Lett. 72, 2223 (1994).ADSCrossRefGoogle Scholar
  18. 17.
    S.M. Foiles, M.I. Baskes, and M.S. Daw, Phys. Rev. B 33, 7983 (1986).ADSCrossRefGoogle Scholar
  19. M.S. Daw, S.M. Foiles, and M.I. Baskes, Mater. Sci. Rep. 9, 251 (1993).CrossRefGoogle Scholar
  20. 18.
    S. Durukanoglu, A. Kara, and Talat S. Rahman, to be published.Google Scholar
  21. 19.
    L. Dobrzynski, Ann. Phys. 4, 637 (1969).Google Scholar
  22. 20.
    G. Treglia and M. C. Desjonquères, J. Physique 46, 987 (1985).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • S. Durukanog̃lu
    • 1
  • A. Kara
    • 1
  • T. S. Rahman
    • 1
  1. 1.Department of PhysicsKansas State UniversityManhattanUSA

Personalised recommendations