High-Temperature Simulation of Diffusion of Ag on Ag(110)

  • R. Ferrando
Part of the NATO ASI Series book series (NSSB, volume 360)


The high-temperature diffusion of silver adatoms on Ag(110) is studied by molecular dynamics simulations. Silver is modeled by many-body potentials derived in the framework of the second-moment approximation to the tight-binding model. Single and long jumps along the [110] direction and cross-channel exchanges are found at the lowest temperature considered in the simulations (450 K); simple exchanges are possible along the [001] direction and in the diagonal direction, essentially with the same probability. Correlated events involving both jumps and exchanges become important as the temperature is raised to 600K. These events can be jump-exchange, exchange-jump, exchange-exchange, or even more complicated and, above 600 K, they amount to about one-quarter of the total exchanges. The appearance of these events is related to the strong anharmonic vibrations of the row atoms in the top surface layer.


Double Exchange Black Star White Star Anharmonic Vibration Diagonal Exchange 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.L. Kellogg, Surf. Sci. Rep. 21, 1 (1994); G. Ehrlich, Surf. Sci. 246, 1 (1991).ADSCrossRefGoogle Scholar
  2. 2.
    J.E. Black and Z.J. Tian, Phys. Rev. Lett. 71, 2445 (1993).ADSCrossRefGoogle Scholar
  3. 3.
    J.M. Cohen, Surf. Sci. 306, L545 (1994).ADSCrossRefGoogle Scholar
  4. 4.
    V. Rosato, M. Guillopé and B. Legrand, Phil. Mag. A59, 321 (1989).ADSGoogle Scholar
  5. 5.
    M. Guillopé and B. Legrand, Surf. Sci. 215, 577 (1989).ADSCrossRefGoogle Scholar
  6. 6.
    R. Ferrando, Phys. Rev. Lett. 76, 4195, (1996).ADSCrossRefGoogle Scholar
  7. 7.
    K.D. Shiang, CM. Wei and T.T. Tsong, Surf. Sci. 301, 137.Google Scholar
  8. 8.
    K.D. Shiang and T.T. Tsong, Phys. Rev. B49, 7670 (1994).ADSGoogle Scholar
  9. 9.
    F. Hontinfinde, R. Ferrando and A.C. Levi, Surf. Sci., in press.Google Scholar
  10. 10.
    R. Ferrando and G. Tréglia, Phys. Rev. B50, 12104 (1994).ADSGoogle Scholar
  11. 11.
    CL. Liu, J.M. Cohen, J.B. Adams and A.F. Voter, Surf. Sci. 253, 334 (1991).ADSCrossRefGoogle Scholar
  12. 12.
    L.S. Perkins and A.E. DePristo, Surf. Sci. 317, L1152 (1994).ADSCrossRefGoogle Scholar
  13. 13.
    R. Ferrando, R. Spadacini and G.E. Tommei, Phys. Rev. E48, 2437 (1993); Surf. Sci. 265, 273 (1992).ADSGoogle Scholar
  14. R. Ferrando, R. Spadacini, G.E. Tommei and G. Caratti, Surf. Sci. 311, 411 (1994).ADSCrossRefGoogle Scholar
  15. 14.
    G. Jacucci, M. Marchese, G.B. Bachelet, M. Ronchetti, G.L. Chiarotti and G. De Lorenzi, Computer Simulation in Material Science, in Current Trends in the Physics of Materials, G.F. Chiarotti, F. Fumi and M.P. Tosi eds., Proceedings of the International School of Physics “Enrico Fermi” Vol. 106, Bologna 1990, p. 121.Google Scholar
  16. 15.
    G.L. Kellogg, Phys. Rev. Lett. 67, 216 (1991).ADSCrossRefGoogle Scholar
  17. 16.
    C. Chen and T.T. Tsong, Phys. Rev. Lett. 66, 1610 (1991).ADSCrossRefGoogle Scholar
  18. 17.
    G. Bracco, L. Bruschi, L. Pedemonte and R. Tatarek, Surf. Sci. 352–354, 964 (1996).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • R. Ferrando
    • 1
  1. 1.Dipartimento di Fisica dell’UniversitàINFM and CFSBT/CNRGenovaItaly

Personalised recommendations