Diffusion on Surfaces Affected by Lateral Interactions

  • R. W. Verhoef
  • W. Zhao
  • M. Asscher
Part of the NATO ASI Series book series (NSSB, volume 360)


We have investigated the effect of lateral interactions on the diffusion of adsorbates on surfaces using laser diffraction of second harmonic light. Computer simulations of diffusion for a number of interaction models predict a wide range of behavior for the decay of the diffraction signals during diffusion. Experimental results for the diffusion of potassium on Re(001) show that the activation energy for diffusion reaches a minimum at a coverage of approximately 0.7 ML and then increases. The experimentally determined activation energies and diffusion coefficients as a function of potassium coverage are described well by a depolarization model derived from work function measurements.


Attractive Interaction Repulsive Interaction Lateral Interaction Second Harmonic Diffraction Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.-L. Dai and W. Ho, Eds., Laser Spectroscopy and Photochemistry on Metal Surfaces, Part I and II, (World Scientific, New York, 1995).Google Scholar
  2. 2.
    R. Viswanathan, D.R. Burgess, P.C. Stair and E. Weitz, J. Vac. Sci. Technol. 20, 605 (1982).ADSCrossRefGoogle Scholar
  3. 3.
    S.M. George, A.M. DeSantolo, and R.B. Hall, Surf. Sci. 159, L425 (1985).CrossRefGoogle Scholar
  4. 4.
    R.B. Hall, A.M. DeSantolo, and S.J. Bares, Surf. Sci. 161, L533 (1985).CrossRefGoogle Scholar
  5. 5.
    C.H. Mak, J.L. Brand, A.A. Deckert, and S.M. George, J. Chem. Phys. 85, 1676 (1986).ADSCrossRefGoogle Scholar
  6. 6.
    E.G. Seebauer and L.D. Schmidt, Chem. Phys. Lett. 123, 129 (1985).ADSCrossRefGoogle Scholar
  7. 7.
    Z. Rosenzweig and M. Asscher, J. Chem. Phys. 96, 4040 (1992).ADSCrossRefGoogle Scholar
  8. 8.
    X.D. Zhu, Th. Rasing, and Y.R. Shen, Phys. Rev. Lett. 61, 2883 (1988).ADSCrossRefGoogle Scholar
  9. 9.
    X.D. Zhu, Mod Phys. Lett B 6, 1217 (1992).ADSCrossRefGoogle Scholar
  10. 10.
    T. Suzuki and T.F. Heinz, Opt. Lett. 14, 1201 (1989).ADSCrossRefGoogle Scholar
  11. 11.
    X.-D. Xiao, X.D. Zhu, W. Daum, and Y.R. Shen, Phys. Rev. B 46, 9732 (1992).ADSCrossRefGoogle Scholar
  12. 12.
    G.A. Reider, U. Höfer, and T.F. Heinz., Phys. Rev. Lett. 66, 1994 (1991).ADSCrossRefGoogle Scholar
  13. 13.
    Z. Rosenzweig, I. Farbman, and M. Asscher, J. Chem. Phys. 98, 8277 (1993).ADSCrossRefGoogle Scholar
  14. 14.
    X.D. Zhu, A. Lee, and A. Wong, Appl. Phys A 52, 317 (1991).ADSCrossRefGoogle Scholar
  15. 15.
    X.-D. Xiao, Y. Xie, and Y.R. Shen, Surf. Sci. 271, 295 (1992).ADSCrossRefGoogle Scholar
  16. 16.
    X.D. Xiao, Y. Xie, and Y.R. Shen, Phys. Rev. B 48, 17452 (1993).ADSCrossRefGoogle Scholar
  17. 17.
    R.W. Verhoef and M. Asscher, Surf. Sci. (submitted).Google Scholar
  18. 18.
    R.W. Verhoef and M. Asscher, Surf. Sci. (submitted).Google Scholar
  19. 19.
    I. Farbman, M. Asscher, and A. Ben-Shaul, J. Chem. Phys. 104, 5674 (1996).ADSCrossRefGoogle Scholar
  20. 20.
    D.R. Jennison, P.A. Shultz, and M.P. Sears, Surf. Sci. (in press).Google Scholar
  21. 21.
    E.V. Albano, J. Chem. Phys. 85, 1044 (1986).ADSCrossRefGoogle Scholar
  22. 22.
    E.V. Albano, Appl. Surf. Sci. 14, 183 (1982-3).Google Scholar
  23. 23.
    J. Topping, Proc. Roy. Soc. (London) A 114, 67 (1927).ADSCrossRefGoogle Scholar
  24. 24.
    E.D. Westre, D.E. Brown, J. Kutzner, and S.M. George, Surf. Sci. 294, 185 (1993).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • R. W. Verhoef
    • 1
  • W. Zhao
    • 1
  • M. Asscher
    • 1
  1. 1.Department of Physical Chemistry And the Farkas Center for Light Induced ProcessesThe Hebrew UniversityJerusalemIsrael

Personalised recommendations