Skip to main content

Mass Transfer in Surface Chemical Processes: Adsorption, Faceting and Reaction on Ag(110)

  • Chapter
Surface Diffusion

Part of the book series: NATO ASI Series ((NSSB,volume 360))

Abstract

Surface chemical processes generally involve the transfer of mass within a complex adlayer structure. Relating mass transfer in such complex systems to the underlying microscopic events is a formidable problem in surface chemical physics. We have used scanning tunneling microscopy (STM) to image mass transfer on Ag(110) and its vicinals in a variety of surface chemical processes. By investigating a broad range of phenomena on these surfaces, including self diffusion, adsorption, faceting, and reaction, we test and obtain a more comprehensive understanding of how mass is transferred within the complex surface chemical milieu. For these vicinal Ag(110) surfaces we find that mass exchange is highly efficient event at room temperature. The mechanisms for mass transfer do not appear unique, but new channels open, as needed, to satisfy the chemical potential balance and sustain mass transfer. For oxidation reactions on Ag(110), crystallographic steps and substrate reconstruction are key elements to the mass-exchange mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.C. Wang and G. Ehrlich, Atom condensation at lattice steps and clusters, in: Phys. Rev. Lett. 71, 4174–4178 (1993).

    Article  ADS  Google Scholar 

  2. G. L. Kellogg, Field ion microscope investigations of adatom and dimer diffusion along Rh(100) step edges, in: Surf. Sci. 359, 237 (1996).

    Article  ADS  Google Scholar 

  3. N.C. Bartelt, J.L. Goldberg, T.L. Einstein, E.D. Williams, J.C. Heyraud, and J.J. Metois, Brownian motion of steps on Si(111), in: Phys. Rev. B 48, 15453–15456 (1993).

    Article  ADS  Google Scholar 

  4. L. Kuipers, M.S. Hodgman, J.W.M. Franken, and H. Vanbeijeren, Step and kind dynamics on Au(110) and Pb(111) studied with a high-speed STM, in: Phys. Rev. B 52, 387 (1995).

    Article  Google Scholar 

  5. M. Giesen-Seibert, F. Schmitz, and H. Ibach, Time fluctuations of steps on Cu(11n) surfaces investigated by temperature variable tunneling microscopy, in: Surf. Sci. 329, 47–60 (1995).

    Article  ADS  Google Scholar 

  6. W.W. Pai, N.C. Bartelt, and J.E. Reutt-Robey, Fluctuation Kinetics of an isolated Ag(110) step, in: Phys. Rev. B 53, 15991–15996 (1996).

    Article  ADS  Google Scholar 

  7. N.C. Bartelt, J.L. Goldberg, T.L. Einstein, and E.D. Williams, The equilibration of terrace width distributions on stepped surfaces, in: Surf. Sci. 273, 252–260 (1992).

    Article  ADS  Google Scholar 

  8. A more comprehensive analysis of the step fluctuation kinetics, based upon the time correlation of the Fourier components of the step edge position, confirms this exchange mechanism. See also Ref. 6.

    Google Scholar 

  9. J.S. Ozcomert, W.W. Pai, N.C. Bartlet, and J.E. Reutt-Robey, Step configurations near pinning sites on Ag(110), in: Surf. Sci. 293, 183–194 (1993).

    Article  ADS  Google Scholar 

  10. L. Vattuone, M. Rocca, C. Borarno, and U. Valbusa, Coverage dependence of sticking coefficient of O2 on Ag(110), in: J. Chem. Phys. 101, 713–730 (1994). The initial sticking

    Article  ADS  Google Scholar 

  11. W.W. Pai and J.E. Reutt-Robey, Formation of (n 1)-O/Ag(110) overlayers and the role of step-edge atoms, in: Phys. Rev. B 53, 15997–16005 (1996).

    Article  ADS  Google Scholar 

  12. Since we do not take into account the coverage dependence of So, this value for Pc should be regarded as a rough estimate.

    Google Scholar 

  13. J.S. Ozcomert, W.W. Pai, N.C. Bartelt, and J.E. Reutt-Robey, Kinetics of oxygen-induced faceting of vicinal Ag(110), in: Phys. Rev. Lett. 72, 258–261 (1993).

    Article  ADS  Google Scholar 

  14. C.T. Campbell and M.T. Paffett, The interactions of O2, CO, and CO2 with Ag(110), in: Surf. Sci. 143, 517–535 (1984), and references therein.

    Article  ADS  Google Scholar 

  15. C. Backx, C.P.M. D. Groot, P. Biloen and W.M.H. Sachtler, Interaction of O2, CO2, CO, C2H4, and C2H4O with Ag(110), in: Surf. Sci. 128, 81 (1983).

    ADS  Google Scholar 

  16. E.M. Stuve, R.J. Madix and B.A. Sexton, An EELS study of CO2 and CO3 adsorbed on oxygen covered Ag(110), in: Chem. Phys. Lett. 89, 48–53 (1982).

    Article  ADS  Google Scholar 

  17. D. E. Ricken, J.S. Somers, A.W. Robinson and A.M. Bradshaw, A photoemission study of the surface carbonate species on Ag(110), in: J. Chem. Phys. 94, 8592–8599 (1991).

    Article  ADS  Google Scholar 

  18. M. Barteau and RJ. Madix, Photoelectron spectra of adsorbed carbonates, in: J. El. Spec. and Rel. Phen. 31, 101–108 (1983).

    Article  Google Scholar 

  19. R. J. Madix, J.L. Solomon and J. Shohr, The orientation of the carbonate anion on Ag(l 10), in: Surf. Sci. Lett. 197, L253–L259 (1988).

    Article  Google Scholar 

  20. M. Bader, B. Hillert, A. Puschmann, J. Haase, and A.M. Bradshaw, Surface carbonate on Ag(110): an x-ray absorption fine-structure study, in: Europhys. Lett. 5, 443–448 (1988).

    Article  ADS  Google Scholar 

  21. N.C. Bartelt, T.L. Einstein, and E.D. Williams, Measuring surface mass diffusion coefficients by observing step fluctuations, in: Surf. Sci. 312, 411–421 (1994).

    Article  ADS  Google Scholar 

  22. CL. Liu, J.M. Cohen, J.B. Adams, and A.F. Voter, Surf. Sci. 253, 334 (1991).

    Article  ADS  Google Scholar 

  23. I. Stensgaard, E. Laegaard, and F. Besenbacher, The reaction of carbon dioxide with an oxygen precovered Ag(110) surface, in: J. Chem. Phys. 103, 9825–9831 (1995).

    Article  ADS  Google Scholar 

  24. Y. Okawa and K. Tanaka, STM investigation of the reaction of Ag-O added rows with CO2 on a Ag(110) surface, in: Surf. Sci. Lett. 344, L1207–L1212. (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reutt-Robey, J.E., Pai, WW. (1997). Mass Transfer in Surface Chemical Processes: Adsorption, Faceting and Reaction on Ag(110). In: Tringides, M.C. (eds) Surface Diffusion. NATO ASI Series, vol 360. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0262-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0262-7_42

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0264-1

  • Online ISBN: 978-1-4899-0262-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics