Mass Transfer in Surface Chemical Processes: Adsorption, Faceting and Reaction on Ag(110)

  • Janice E. Reutt-Robey
  • Woei-Wu Pai
Part of the NATO ASI Series book series (NSSB, volume 360)


Surface chemical processes generally involve the transfer of mass within a complex adlayer structure. Relating mass transfer in such complex systems to the underlying microscopic events is a formidable problem in surface chemical physics. We have used scanning tunneling microscopy (STM) to image mass transfer on Ag(110) and its vicinals in a variety of surface chemical processes. By investigating a broad range of phenomena on these surfaces, including self diffusion, adsorption, faceting, and reaction, we test and obtain a more comprehensive understanding of how mass is transferred within the complex surface chemical milieu. For these vicinal Ag(110) surfaces we find that mass exchange is highly efficient event at room temperature. The mechanisms for mass transfer do not appear unique, but new channels open, as needed, to satisfy the chemical potential balance and sustain mass transfer. For oxidation reactions on Ag(110), crystallographic steps and substrate reconstruction are key elements to the mass-exchange mechanisms.


Scanning Tunneling Microscopy Scanning Tunneling Microscopy Image Step Edge Mass Transfer Mechanism Oxygen Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.C. Wang and G. Ehrlich, Atom condensation at lattice steps and clusters, in: Phys. Rev. Lett. 71, 4174–4178 (1993).ADSCrossRefGoogle Scholar
  2. 2.
    G. L. Kellogg, Field ion microscope investigations of adatom and dimer diffusion along Rh(100) step edges, in: Surf. Sci. 359, 237 (1996).ADSCrossRefGoogle Scholar
  3. 3.
    N.C. Bartelt, J.L. Goldberg, T.L. Einstein, E.D. Williams, J.C. Heyraud, and J.J. Metois, Brownian motion of steps on Si(111), in: Phys. Rev. B 48, 15453–15456 (1993).ADSCrossRefGoogle Scholar
  4. 4.
    L. Kuipers, M.S. Hodgman, J.W.M. Franken, and H. Vanbeijeren, Step and kind dynamics on Au(110) and Pb(111) studied with a high-speed STM, in: Phys. Rev. B 52, 387 (1995).CrossRefGoogle Scholar
  5. 5.
    M. Giesen-Seibert, F. Schmitz, and H. Ibach, Time fluctuations of steps on Cu(11n) surfaces investigated by temperature variable tunneling microscopy, in: Surf. Sci. 329, 47–60 (1995).ADSCrossRefGoogle Scholar
  6. 6.
    W.W. Pai, N.C. Bartelt, and J.E. Reutt-Robey, Fluctuation Kinetics of an isolated Ag(110) step, in: Phys. Rev. B 53, 15991–15996 (1996).ADSCrossRefGoogle Scholar
  7. 7.
    N.C. Bartelt, J.L. Goldberg, T.L. Einstein, and E.D. Williams, The equilibration of terrace width distributions on stepped surfaces, in: Surf. Sci. 273, 252–260 (1992).ADSCrossRefGoogle Scholar
  8. 8.
    A more comprehensive analysis of the step fluctuation kinetics, based upon the time correlation of the Fourier components of the step edge position, confirms this exchange mechanism. See also Ref. 6.Google Scholar
  9. 9.
    J.S. Ozcomert, W.W. Pai, N.C. Bartlet, and J.E. Reutt-Robey, Step configurations near pinning sites on Ag(110), in: Surf. Sci. 293, 183–194 (1993).ADSCrossRefGoogle Scholar
  10. 10.
    L. Vattuone, M. Rocca, C. Borarno, and U. Valbusa, Coverage dependence of sticking coefficient of O2 on Ag(110), in: J. Chem. Phys. 101, 713–730 (1994). The initial stickingADSCrossRefGoogle Scholar
  11. 11.
    W.W. Pai and J.E. Reutt-Robey, Formation of (n 1)-O/Ag(110) overlayers and the role of step-edge atoms, in: Phys. Rev. B 53, 15997–16005 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    Since we do not take into account the coverage dependence of So, this value for Pc should be regarded as a rough estimate.Google Scholar
  13. 13.
    J.S. Ozcomert, W.W. Pai, N.C. Bartelt, and J.E. Reutt-Robey, Kinetics of oxygen-induced faceting of vicinal Ag(110), in: Phys. Rev. Lett. 72, 258–261 (1993).ADSCrossRefGoogle Scholar
  14. 14.
    C.T. Campbell and M.T. Paffett, The interactions of O2, CO, and CO2 with Ag(110), in: Surf. Sci. 143, 517–535 (1984), and references therein.ADSCrossRefGoogle Scholar
  15. 15.
    C. Backx, C.P.M. D. Groot, P. Biloen and W.M.H. Sachtler, Interaction of O2, CO2, CO, C2H4, and C2H4O with Ag(110), in: Surf. Sci. 128, 81 (1983).ADSGoogle Scholar
  16. 16.
    E.M. Stuve, R.J. Madix and B.A. Sexton, An EELS study of CO2 and CO3 adsorbed on oxygen covered Ag(110), in: Chem. Phys. Lett. 89, 48–53 (1982).ADSCrossRefGoogle Scholar
  17. 17.
    D. E. Ricken, J.S. Somers, A.W. Robinson and A.M. Bradshaw, A photoemission study of the surface carbonate species on Ag(110), in: J. Chem. Phys. 94, 8592–8599 (1991).ADSCrossRefGoogle Scholar
  18. 18.
    M. Barteau and RJ. Madix, Photoelectron spectra of adsorbed carbonates, in: J. El. Spec. and Rel. Phen. 31, 101–108 (1983).CrossRefGoogle Scholar
  19. 19.
    R. J. Madix, J.L. Solomon and J. Shohr, The orientation of the carbonate anion on Ag(l 10), in: Surf. Sci. Lett. 197, L253–L259 (1988).CrossRefGoogle Scholar
  20. 20.
    M. Bader, B. Hillert, A. Puschmann, J. Haase, and A.M. Bradshaw, Surface carbonate on Ag(110): an x-ray absorption fine-structure study, in: Europhys. Lett. 5, 443–448 (1988).ADSCrossRefGoogle Scholar
  21. 21.
    N.C. Bartelt, T.L. Einstein, and E.D. Williams, Measuring surface mass diffusion coefficients by observing step fluctuations, in: Surf. Sci. 312, 411–421 (1994).ADSCrossRefGoogle Scholar
  22. 22.
    CL. Liu, J.M. Cohen, J.B. Adams, and A.F. Voter, Surf. Sci. 253, 334 (1991).ADSCrossRefGoogle Scholar
  23. 23.
    I. Stensgaard, E. Laegaard, and F. Besenbacher, The reaction of carbon dioxide with an oxygen precovered Ag(110) surface, in: J. Chem. Phys. 103, 9825–9831 (1995).ADSCrossRefGoogle Scholar
  24. 24.
    Y. Okawa and K. Tanaka, STM investigation of the reaction of Ag-O added rows with CO2 on a Ag(110) surface, in: Surf. Sci. Lett. 344, L1207–L1212. (1995).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Janice E. Reutt-Robey
    • 1
  • Woei-Wu Pai
    • 2
  1. 1.Department of Chemistry and BiochemistryUniversity of MarylandCollege ParkUSA
  2. 2.Department of PhysicsUniversity of MarylandCollege ParkUSA

Personalised recommendations