Advertisement

Monte Carlo Simulation of Surface Diffusion on Homogeneous and Heterogeneous Surfaces

  • Christian Uebing
Part of the NATO ASI Series book series (NSSB, volume 360)

Abstract

In recent years, lattice gas models have been introduced to study the effects of adsorbate-adsorbate interactions and surface heterogeneity on surface diffusion. In many cases, even lattice gas models are too complicated for exact analytical treatments of the diffusion problem, especially if ad-ad interactions are taken into consideration, and only in some exceptional cases general equations for the description of surface diffusion can be derived. However, the Monte Carlo method constitutes a powerful tool to analyze surface diffusion. As shown in previous publications, this method is extremely valuable to improve our understanding of adatom diffusion on homogeneous and heterogenous surfaces.

Keywords

Saddle Point Surface Diffusion Periodic Potential Coverage Dependence Chemical Diffusion Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Gomer, Rep. Prog. Phys. 53, 917 (1990).ADSCrossRefGoogle Scholar
  2. 2.
    R. Gomer, Surf. Sci. 38, 373 (1973).ADSCrossRefGoogle Scholar
  3. 3.
    M.L. Lozano and M.C. Tringides, Europhys. Lett. 30, 537 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    K. Binder, in Phase Transitions and Critical Phenomena, C. Domb and J.L. Lebowitz, eds., Academic Press, New York, (1983), Vol. IIX, p. 1.Google Scholar
  5. 5.
    E. Bauer, in Structure and Dynamics of Surfaces II, W. Schommers and P. von Blanckenhagen, eds., Springer, Berlin, (1987), p. 115.Google Scholar
  6. 6.
    S.K. Ma, Modem Theory of Critical Phenomena, Benjamin, Reading, Mass., (1976).Google Scholar
  7. 7.
    D.P. Landau, in Monte Carlo Methods in Statistical Physics, K. Binder, ed., Springer-Verlag, Berlin, (1979).Google Scholar
  8. 8.
    D.P. Landau, in Applications of the Monte Carlo Method, K. Binder, ed., Springer-Verlag, Berlin, (1987).Google Scholar
  9. 9.
    K. Binder and D.P. Landau, Surf. Sci. 61, 577 (1976).ADSCrossRefGoogle Scholar
  10. 10.
    K. Binder and D.P. Landau, Phys. Rev. B 21, 1941 (1980).ADSGoogle Scholar
  11. 11.
    K. Kehr and K. Binder, in Applications of the Monte Carlo Method in Statistical Physics, Vol. 36 of Topics in Current Physics, 2nd ed., K. Binder, ed., Springer-Verlag, Berlin, (1987), p. 181.CrossRefGoogle Scholar
  12. 12.
    C. Uebing and R. Gomer, Ber. Bunsenges. Phys. Chem., in print.Google Scholar
  13. 13.
    C. Uebing and R. Gomer, J. Chem. Phys. 95, 7626 (1991).ADSCrossRefGoogle Scholar
  14. 14.
    M. Tringides and R. Gomer, Surf. Sci. 166, 419 (1986).ADSCrossRefGoogle Scholar
  15. 15.
    M. Tringides and R. Gomer, Surf. Sci. 145, 121 (1984).ADSCrossRefGoogle Scholar
  16. 16.
    C. Uebing and R. Gomer, J. Chem. Phys. 100, 7759 (1994).ADSCrossRefGoogle Scholar
  17. 17.
    G.E. Murch and R.J. Thorn, J. Phys. Chem. Solids 38, 789 (1977).ADSCrossRefGoogle Scholar
  18. 18.
    G.E. Murch, Phil. Mag. A 43, 871 (1981).ADSGoogle Scholar
  19. 19.
    A.D. LeClaire, in Physical Chemistry — An Advanced Treatise, H. Eyring, D. Henderson, and W. Jost, eds., Academic Press, New York, (1970), Vol. 10.Google Scholar
  20. 20.
    G. Mazenko, J.R. Banavar, and R. Gomer, Surf. Sci. 107, 459 (1981).ADSCrossRefGoogle Scholar
  21. 21.
    D.A. Reed and G. Ehrlich, Surf. Sci. 105, 603 (1981).ADSCrossRefGoogle Scholar
  22. 22.
    C. Uebing and R. Gomer, J. Chem. Phys. 95, 7636 (1991).ADSCrossRefGoogle Scholar
  23. 23.
    C. Uebing and R. Gomer, J. Chem. Phys. 95, 7641 (1991).ADSCrossRefGoogle Scholar
  24. 24.
    C. Uebing and R. Gomer, J. Chem. Phys. 95, 7648 (1991).ADSCrossRefGoogle Scholar
  25. 25.
    L. Onsager, Phys. Rev. 65, 117 (1944).MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. 26.
    A.V. Myshlyavtsev, A.P. Stepanov, C. Uebing, and V.P. Zhdanov, Phys. Rev. B 52, 5977 (1995).ADSGoogle Scholar
  27. 27.
    C. Uebing and R. Gomer, Surf. Sci. 331-333, 930 (1995).ADSCrossRefGoogle Scholar
  28. 28.
    V. Mayagoitia, F. Rojas, V. Pereyra, and G. Zgrablich, Surf. Sci. 221, 394 (1989).ADSCrossRefGoogle Scholar
  29. 29.
    V. Mayagoitia, F. Rojas, J.L. Riccardo, V. Pereyra, and G. Zgrablich, Phys. Rev. B 41, 7150 (1990).ADSGoogle Scholar
  30. 30.
    E. Viljoen and C. Uebing, Surf. Sci., in print.Google Scholar
  31. 31.
    E. Viljoen and C. Uebing, Langmuir, in print.Google Scholar
  32. 32.
    C. Uebing, V. Pereyra, and G. Zgrablich, Surf. Sci., in print.Google Scholar
  33. 33.
    C. Uebing, Ber. Bunsenges. Phys. Chem. 99, 951 (1995).Google Scholar
  34. 34.
    C. Uebing and R. Gomer, Surf. Sci. 306, 419 (1994).ADSCrossRefGoogle Scholar
  35. 35.
    C. Uebing and R. Gomer, Surf. Sci. 306, 427 (1994).ADSCrossRefGoogle Scholar
  36. 36.
    C. Uebing and R. Gomer, Surf. Sci. 317, 165 (1994).ADSCrossRefGoogle Scholar
  37. 37.
    C. Uebing, Phys. Rev. B 49, 13913 (1994).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Christian Uebing
    • 1
  1. 1.Max-Planck-Institut für EisenforschungDüsseldorfGermany

Personalised recommendations