Resonant Diffusion on Solid Surfaces

  • Roumen Tsekov
Part of the NATO ASI Series book series (NSSB, volume 360)

Abstract

A new approach to Brownian motion of atomic clusters on solid surfaces is developed. The main problem discussed is the dependence of the diffusion coefficient on the fitness between the surface static potential and the internal cluster configuration. It is shown this dependence is non-monotonous which is the essence of the so-called resonant diffusion. Assuming internal motions of the cluster quicker than its translation, adiabatic separation of these variables is possible and a relatively simple expression for the diffusion coefficient is obtained. In this way, the role of cluster vibrations is accounted for, thus leading to a more complex resonance in the cluster surface mobility.

Keywords

Brownian Motion Atomic Cluster Overdamped Limit Internal Potential Energy Average Potential Acting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Erhlich, and K. Stolt, Annu. Rev. Phys. Chem. 31, 603 (1980).ADSCrossRefGoogle Scholar
  2. 2.
    G. Ehrlich, Surf. Sci. 331-333, 865 (1995).ADSCrossRefGoogle Scholar
  3. 3.
    G.L. Kellog, Surf. Sci. Rep. 21, 1 (1994).ADSCrossRefGoogle Scholar
  4. 4.
    G.N. Vayssilov, Adv. Colloid Interface Sci. 43, 51 (1993).CrossRefGoogle Scholar
  5. 5.
    K. Christmann, Introduction to Surface Physical Chemistry (Springer, NY, 1991).CrossRefGoogle Scholar
  6. 6.
    R. Tsekov and E. Ruckenstein, J. Chem. Phys. 100, 3808 (1994).ADSCrossRefGoogle Scholar
  7. 7.
    G.L. Kellog, Phys. Rev. Lett. 73, 1833 (1994).ADSCrossRefGoogle Scholar
  8. 8.
    R. Wang and K.A. Fichthorm, Phys. Rev. B 48, 18288 (1993).ADSCrossRefGoogle Scholar
  9. 9.
    E. Ruckenstein and R. Tsekov, J. Chem. Phys. 100, 7696 (1994).ADSCrossRefGoogle Scholar
  10. 10.
    W.G. Kleppmann and R. Zeyher, Phys. Rev. B 22, 6044 (1980).ADSCrossRefGoogle Scholar
  11. 11.
    K. Golden, S. Goldstein and J.L. Lebowitz, Phys. Rev. Lett. 55, 2629 (1985).MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    R. Ferrando, R. Spadacini, G.E. Tommei and G. Caratti, Physica A 195, 506 (1993).ADSCrossRefGoogle Scholar
  13. 13.
    R. Tsekov and E. Ruckenstein, J. Chem. Phys. 100, 1450 (1994).ADSCrossRefGoogle Scholar
  14. 14.
    Yu. Georgievskii and E. Pollak, Phys. Rev. E 49, 5098 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    R. Tsekov and E. Ruckenstein, J. Chem. Phys. 101, 7844 (1994).ADSCrossRefGoogle Scholar
  16. 16.
    G.N. Vayssilov, Adv. Colloid Interface Sci. 57, 123 (1995).CrossRefGoogle Scholar
  17. 17.
    R. Festa and E.G. d’Agliano, Physica A 90, 229 (1978).ADSCrossRefGoogle Scholar
  18. 18.
    R. Tsekov and E. Ruckenstein, Surf. Sci. 344, 175 (1995).ADSCrossRefGoogle Scholar
  19. 19.
    R. Tsekov, Ann. Univ. Sofia, Fac. Chim. 88, 57 (1995).Google Scholar
  20. 20.
    R. Tsekov, J.Phys. A: Math. Gen. 28, L557 (1995).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Roumen Tsekov
    • 1
  1. 1.Department of Physical ChemistryUniversity of SofiaSofiaBulgaria

Personalised recommendations