Late Stage Phase Separation on Surfaces: Diffusion Controlled Processes

  • Martin Zinke-Allmang
Part of the NATO ASI Series book series (NSSB, volume 360)


The role of surface diffusion during the late stages of surface phase separations is discussed. For Ostwald ripening, the basic mean field model and extensions to include cluster-cluster interactions are considered. For coalescence growth we focus on concurrently occuring transient stages which resemble the early stages of phase separation.


Surface Diffusion Cluster Growth Cluster Size Distribution Cluster Morphology Surface Diffusion Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. A. Venables, G. D. T. Spiller, and M. Hanbücken, Nucleation and growth of thin films, Rep. Prog. Phys. 47, 399 (1984).ADSCrossRefGoogle Scholar
  2. J. A. Venables, Atomic processes in crystal growth, Surf. Sci. 299/300, 798 (1994).ADSCrossRefGoogle Scholar
  3. 2.
    I. M. Lifshitz and V. V. Slyozov, Kinetics of diffusive decomposition of supersaturated solid solutions, Sov. Phys. JETP 35, 331 (1959).Google Scholar
  4. I. M. Lifshitz and V. V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids 19, 35 (1961).ADSCrossRefGoogle Scholar
  5. 3.
    F. Family and P. Meakin, Scaling of the droplet-size distribution in vapor-deposited thin films, Phys. Rev. Lett. 61, 428 (1988).ADSCrossRefGoogle Scholar
  6. 4.
    B. K. Chakraverty, Grain size distribution in thin films — 1. Conservative systems, J. Phys. Chem. Solids 28, 2401 (1967).ADSCrossRefGoogle Scholar
  7. 5.
    M. Zinke-Allmang, L. C. Feldman, and M. H. Grabow, Clustering on surfaces, Surf. Sci. Rept. 16, 377 (1992).ADSCrossRefGoogle Scholar
  8. 6.
    C. Wagner, Theorie der Alterung von Niederschlägen durch Umlösen, Z. Elektrochem. 65, 581 (1961).Google Scholar
  9. 7.
    P. Wynblatt and N. A. Gjostein, Supported metal crystallites, in: Progress in Solid State Chemistry, J. O. McCaldin and G. Somorjai, eds., Pergamon, Oxford (1975) Vol. 9, p. 21.Google Scholar
  10. 8.
    1 ML corresponds to the number of atoms of the outmost layer of the substrate surface, e.g., for Si(111): 7.83 1014 at/cm2.Google Scholar
  11. 9.
    M. Zinke-Allmang and L. C. Feldman, Scaling and self-similarity in growth of clusters on surfaces, Appl. Surf. Sci. 52, 357 (1991).ADSCrossRefGoogle Scholar
  12. 10.
    M. Zinke-Allmang, L. C. Feldman, S. Nakahara, and B. A. Davidson, Growth mechanism and clustering phenomena: The Ge-on-Si system, Phys. Rev. B39, 7848 (1989).ADSGoogle Scholar
  13. 11.
    H.-J. Gossmann and G. J. Fisanick, Surface diffusion and islanding in semiconductor heterostructures, Scan. Microsc. 4, 543 (1990).Google Scholar
  14. 12.
    M. Zinke-Allmang and S. Stoyanov, Surface diffusion coefficients on Stranski-Krastanov layers, Jpn. J. Appl Phys. 29, L1884 (1990).ADSCrossRefGoogle Scholar
  15. 13.
    M. Zinke-Allmang and M. C. Tringides, Comparison of surface diffusion models for neopentane on Ru(001), Surf. Sci. Lett. 280, L273 (1993).ADSCrossRefGoogle Scholar
  16. 14.
    R. Barel, Y. Mai, G. R. Carlow, and M. Zinke-Allmang, Clustering on surfaces at finite areal coverages, Appl. Surf. Sci. (1996), in press.Google Scholar
  17. 15.
    G. R. Carlow and M. Zinke-Allmang, Clustering across concentration gradients, Cdn. J. Phys. 72, 812 (1994).ADSGoogle Scholar
  18. 16.
    G. R. Carlow and M. Zinke-Allmang, Areal fraction effects during late-stage clustering on surfaces, Surf. Sci. 328, 311 (1995).ADSCrossRefGoogle Scholar
  19. 17.
    C. W. J. Bennakker and J. Ross, Theory of Ostwald ripening for open systems, J. Chem. Phys. 83, 4710 (1985).ADSCrossRefGoogle Scholar
  20. 18.
    G. R. Carlow and M. Zinke-Allmang, Co redistribution after low dose implantation in silicon, to be published.Google Scholar
  21. 19.
    J. A. Venables, Nucleation, growth and pattern formation in heteroepitaxy, Physica A (1997), in press.Google Scholar
  22. 20.
    M. Zinke-Allmang, L. C. Feldman, and W. van Saarloos, Experimental study of self-similarity in the coalescence growth regime, Phys. Rev. Lett. 68, 2358 (1992).ADSCrossRefGoogle Scholar
  23. 21.
    T. D. Lowes and M. Zinke-Allmang, Microscopic study of cluster formation in the Ga on GaAs(001) system, J. Appl. Phys. 73, 4937 (1993).ADSCrossRefGoogle Scholar
  24. 22.
    M. Zinke-Allmang, L. C. Feldman, and S. Nakahara, Three-dimensional clustering on surfaces: overlayers on Si, in: Kinetics of Ordering and Growth at Surfaces, M. G. Lagally, ed., Plenum Press, New York (1990) p. 455.CrossRefGoogle Scholar
  25. 23.
    J. L. Viovy, D. Beysens, and C. M. Knobler, Scaling description fro the growth of condensation patterns on surfaces, Phys. Rev. A37, 4965 (1988).ADSGoogle Scholar
  26. 24.
    M. Zinke-Allmang, S. C. Puddephatt, and T. D. Lowes, Thin film growth effects related to the propensity for clustering, in: Epitaxial Growth Processes, Proceedings of the SPIE Meeting, Society of Photo-Optical Instrumentation Engineers, Bellingham, WA (1994) Vol. 2140, p. 36.Google Scholar
  27. 25.
    T. D. Lowes and M. Zinke-Allmang, Cluster shape cycles during self-similar cluster growth, Phys. Rev. B49, 16678 (1994).ADSGoogle Scholar
  28. 26.
    S. A. Nasr and M. Zinke-Allmang, Structural decomposition at Sn/GaAs(001) interface, Mat. Res. Soc. Symp. Proc. 399, 171 (1996).CrossRefGoogle Scholar
  29. 27.
    G. R. Carlow, Ostwald ripening on surfaces when mass conservation is violated: spatial cluster patterns, Physica A (1997), in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Martin Zinke-Allmang
    • 1
  1. 1.Department of PhysicsUniversity of Western OntarioLondonCanada

Personalised recommendations