Surface Diffusion of Metal Atoms and Clusters Directly Observed

  • Gert Ehrlich
Part of the NATO ASI Series book series (NSSB, volume 360)


The first diffusion studies on individual atoms appeared 30 years ago,1 at a time when even qualitative information about the behavior of atoms on metal surfaces was sparse. Since then, such investigations have become widespread, and the importance of this information in understanding more macroscopic phenomena, such as sintering and crystal growth, is widely recognized. It therefore seems appropriate to briefly summarize some of the things learned in single atom studies on metal surfaces, as well as to highlight recent developments and trends.


Scanning Tunneling Microscope Surface Diffusion Single Atom Embed Atom Method46 Jump Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a historical account, see G. Ehrlich, Diffusion of individual adatoms, Surf. Sci. 299/300, 628 (1994).ADSCrossRefGoogle Scholar
  2. 2.
    Rate theory background is nicely presented by C. P. Flynn, Point Defects and Diffusion, Clarendon Press, Oxford (1972).Google Scholar
  3. 3.
    G. DeLorenzi, G. Jacucci, and V. Pontikis, Diffusion of adatoms and vacancies on otherwise perfect surfaces: A molecular dynamics study, Surf Sci. 116, 391 (1982).ADSCrossRefGoogle Scholar
  4. 4.
    D. E. Sanders and A. E. DePristo, A non-unique relationship between potential energy surface barrier and dynamical diffusion barrier: fcc(111) metal surface, Surf. Sci. 264, L169 (1992).CrossRefGoogle Scholar
  5. 5.
    P. Stoltze, Simulation of surface defects, J. Condens. Matter 6, 9495 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    E. W. Müller and T. T. Tsong, Field Ion Microscopy Principles and Applications, American Elsevier, New York (1969).Google Scholar
  7. 7.
    A. V. Crewe, High — resolution scanning transmission electron microscopy, Science 221, 325 (1983).ADSCrossRefGoogle Scholar
  8. 8.
    M. Utlaut, Direct observation of the behavior of heavy single atoms on amorphous carbon substrates, Phys. Rev. B22, 4650 (1980).ADSGoogle Scholar
  9. 9.
    T. Zambelli, J. Trost, J. Wintterlin, and G. Ertl, Diffusion and atomic hopping of N atoms on Ru(0001) studied by scanning tunneling microscopy, Phys. Rev. Lett. 76, 795 (1996).ADSCrossRefGoogle Scholar
  10. 10.
    B. S. Swartzentruber, Direct measurement of surface diffusion using atom-tracking scanning tunneling microscopy, Phys. Rev. Lett. 76, 459 (1996).ADSCrossRefGoogle Scholar
  11. 11.
    P. Ebert, M. G. Lagally, and K. Urban, Scanning-tunneling-microscope tip-induced migration of vacancies on GaP(110), Phys. Rev. Lett. 70, 1437 (1993).ADSCrossRefGoogle Scholar
  12. 12.
    Y. W. Mo, Direct determination of surface diffusion by displacement distribution measurement with scanning tunneling microscopy, Phys. Rev. Lett. 71, 2923 (1993).ADSCrossRefGoogle Scholar
  13. 13.
    M. Bott, M. Hohage, M. Morgenstern, T. Michely, and G. Comsa, New approach for determination of diffusion parameters of adatoms, Phys. Rev. Lett. 76, 1304 (1996).ADSCrossRefGoogle Scholar
  14. 14.
    J. Li, R. Berndt, and W.-D. Schneider, Tip-assisted diffusion on Ag(110) in scanning tunneling microscopy, Phys. Rev. Lett. 76, 1888 (1996).ADSCrossRefGoogle Scholar
  15. 15.
    A. Gölzhäuser and G. Ehrlich, Atom movement and binding on surface clusters: Pt on Pt(111) Clusters, Phys. Rev. Lett. 77, 1334 (1996).CrossRefGoogle Scholar
  16. 16.
    D. W. Bassett, Observing surface diffusion on the atomic level, in Surface Mobilities on Solid Materials, edited by V. T. Binh (Plenum, New York, 1983), p. 63, 83.CrossRefGoogle Scholar
  17. 17.
    T. T. Tsong, Atom-probe Field Ion Microscopy, Cambridge University Press, Cambridge (1990).CrossRefGoogle Scholar
  18. 18.
    G. L. Kellogg, Field ion microscope studies of single-atom surface diffusion and cluster nucleation on metal surfaces, Surf. Sci. Rpts. 21, 1 (1994).CrossRefGoogle Scholar
  19. 19.
    R. T. Tung and W. R. Graham, Single atom self — diffusion on nickel surfaces, Surf. Sci. 97, 73 (1980).ADSCrossRefGoogle Scholar
  20. 20.
    G. Ayrault and G. Ehrlich, Surface self — diffusion on an fcc crystal: an atomic view, J. Chem. Phys. 60, 281 (1974).ADSCrossRefGoogle Scholar
  21. 21.
    G. Ehrlich and F. G. Hudda, Atomic view of surface self — diffusion: Tungsten on tungsten, J. Chem. Phys. 44, 1039 (1966).ADSCrossRefGoogle Scholar
  22. 22.
    J. Goldstein, Personal Communication (1996).Google Scholar
  23. 23.
    S. C. Wang and G. Ehrlich, Self — adsorption sites on a close — packed surface: Ir on Ir(111), Phys. Rev. Lett. 62, 2297 (1989).ADSCrossRefGoogle Scholar
  24. 24.
    D. C. Senft, Personal Communication (1994).Google Scholar
  25. 25.
    S. C. Wang and G. Ehrlich, Adatom diffusion on W(211): Re, W, Mo, Ir, and Rh, Surf. Sci. 206, 451 (1988).ADSCrossRefGoogle Scholar
  26. 26.
    S. C. Senft and G. Ehrlich, Long jumps in surface diffusion: One-dimensional migration of isolated adatoms, Phys. Rev. Lett. 74, 294 (1995).ADSCrossRefGoogle Scholar
  27. 27.
    P. G. Flahive and W. R. Graham, The determination of single atom surface site geometry on W(lll), W(211) and W(321), Surf. Sci. 91, 463 (1980).ADSCrossRefGoogle Scholar
  28. 28.
    K. Stolt, W. R. Graham, and G. Ehrlich, Surface diffusion of individual atoms and dimers: Re on W(211), J. Chem. Phys. 65, 3206 (1976).ADSCrossRefGoogle Scholar
  29. 29.
    G. L. Kellogg, Surface diffusion and clustering of nickel atoms on the (110) plane of tungsten, Surf. Sci. 187, 153 (1987).ADSCrossRefGoogle Scholar
  30. 30.
    V. R. Dhanak and D. W. Bassett, Field ion microscope studies of submonolayer rhodium films on (110) tungsten and molybdenum surfaces, Surf. Sci. 238, 289 (1990).ADSCrossRefGoogle Scholar
  31. 31.
    S.J. Koh, Personal Communication (1996).Google Scholar
  32. 32.
    D. W. Bassett and M. J. Parsley, Field ion microscopic studies of transition metal adatom diffusion on (110), (211) and (321) tungsten surfaces, J. Phys. D3, 707 (1970).Google Scholar
  33. au[33.
    M. Lovisa and G. Ehrlich, Adatom diffusion on metals: Ir on W(110), J. Phys. (Paris) 50, C8279 (1989).Google Scholar
  34. 34.
    D. W. Bassett, Migration of platinum adatom clusters on tungsten (110) surfaces, J. Phys. C9, 2491 (1976).ADSGoogle Scholar
  35. 35.
    W. Xu and J. B. Adams, W single adatom diffusion on W surfaces, Surf. Sci. 319, 58 (1994).ADSCrossRefGoogle Scholar
  36. 36.
    C. L. Liu, J. M. Cohen, J. B. Adams, and A. F. Voter, EAM study of surface self-diffusion of single adatoms of fcc metals Ni, Cu, Al, Ag, Au, Pd, and Pt, Surf. Sci. 253, 334 (1991).ADSCrossRefGoogle Scholar
  37. 37.
    D. W. Bassett and P. R. Webber, Diffusion of single adatoms of platinum, iridium and gold on platinum surfaces, Surf. Sci 70, 520 (1978).ADSCrossRefGoogle Scholar
  38. 38.
    G. L. Kellogg, Temperature dependence of surface self-diffusion on Pt(001), Surf. Sci. 246, 31 (1991).ADSCrossRefGoogle Scholar
  39. 39.
    W. R. Graham and G. Ehrlich, Surface self-diffusion of single atoms, Thin Solid Films 25, 85 (1975).ADSCrossRefGoogle Scholar
  40. 40.
    M. G. Kendall and A. Stuart, The Advanced Theory of Statistics, 4thEd., Ch. Griffin, London (1977), Chapt. 12.Google Scholar
  41. 41.
    M. F. Lovisa, Personal Communication (1992).Google Scholar
  42. 42.
    T. T. Tsong and G. Kellogg, Direct observation of the directional walk of single adatoms and the adatom polarizability, Phys. Rev. B12, 1343 (1975).ADSGoogle Scholar
  43. 43.
    D. A. Reed and G. Ehrlich, Monte Carlo analysis of experiments on individual adatoms, Surf. Sci. 120, 179 (1982).ADSCrossRefGoogle Scholar
  44. 44.
    M. F. Lovisa and G. Ehrlich, Quantitative determinations of the temperature dependence of diffusion phenomena in the FIM, Surf. Sci. 246, 43 (1991).ADSCrossRefGoogle Scholar
  45. 45.
    S. C. Wang and G. Ehrlich, Atomic behavior at individual binding sites: Ir, Re, and W on Ir(111), Phys. Rev. Lett. 68, 1160 (1992).ADSCrossRefGoogle Scholar
  46. 46.
    M. S. Daw and M. I. Baskes, Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals, Phys, Rev. Lett. 50, 1285 (1983).ADSCrossRefGoogle Scholar
  47. 47.
    K. W. Jacobsen, J. K. Nørskov, and M. J. Puska, Interatomic interactions in the effective medium theory, Phys. Rev. B 35, 7423 (1987).ADSCrossRefGoogle Scholar
  48. 48.
    R. Poelsema, R. Kunkel, N. Nagel, A. F. Becker, G. Rosenfeld, L. K. Verheij, and G. Comsa, New phenomena in homoepitaxial growth of metals, Appl. Phys. A53, 369 (1991).ADSGoogle Scholar
  49. 49.
    P. J. Feibelman, J. S. Nelson, and G. L. Kellogg, Energetics of Pt adsorption on Pt(111), Phys. Rev. B 49, 10548 (1994).ADSCrossRefGoogle Scholar
  50. 50.
    J. Jacobsen, K. W. Jacobsen, P. Stoltze, and J. J. Nørskov, Island shape-induced transition from 2D to 3D Growth for Pt/Pt(111), Phys. Rev. Lett. 74, 2295 (1995).ADSCrossRefGoogle Scholar
  51. 51.
    S. Liu, Z. Zhang, J. Nørskov, and H. Metiu, The mobility of Pt atoms and small Pt clusters on Pt(111) and its implications for the early stages of epitaxial growth, Surf. Sci. 321, 161 (1994).ADSCrossRefGoogle Scholar
  52. 52.
    M. Villarba and H. Jónsson, Diffusion mechanisms relevant to metal crystal growth: Pt/Pt(111), Surf. Sci. 317, 15 (1994).ADSCrossRefGoogle Scholar
  53. 53.
    R. Wang and K. A. Fichthorn, An investigation of the energetics and dynamics of adatom motion to descending step edges in Pt/Pt(111) homoepitaxi, Surf. Sci. 301, 253 (1994).ADSCrossRefGoogle Scholar
  54. 54.
    A. Gölzhäuser, Personal Communication (1996).Google Scholar
  55. 55.
    T. Halicioglu, An atomistic calculation of two-dimensional diffusion of a Pt adatom on a Pt(110) surface, Surf. Sci. 79, L346 (1979).ADSCrossRefGoogle Scholar
  56. 56.
    J. D. Wrigley and G. Ehrlich, Surface diffusion by an atomic exchange mechanism, Phys. Rev. Lett 44, 661 (1980).ADSCrossRefGoogle Scholar
  57. 57.
    G. DeLorenzi and G. Jacucci, The migration of point defects on bcc surfaces using a metallic pair potential, Surf. Sci. 164, 526 (1985).ADSCrossRefGoogle Scholar
  58. 58.
    G. L. Kellogg and P. J. Feibelman, Surface self-diffusion on Pt(001) by an atomic exchange mechanism, Phys. Rev. Lett. 64, 3143 (1990).ADSCrossRefGoogle Scholar
  59. 59.
    C. Chen and T. T. Tsong, Displacement distribution and atomic jump direction in diffusion of Ir atoms on the Ir(001) Surface, Phys. Rev. Lett. 64, 3147 (1990).ADSCrossRefGoogle Scholar
  60. 60.
    G. L. Kellogg, Direct observations of adatom-surface-atom replacement: Pt on Ni(110), Phys. Rev. Lett. 67, 216 (1991).ADSCrossRefGoogle Scholar
  61. 61.
    T. T. Tsong and C. L. Chen, Displacement distributions in diffusion by atomic replacement: Ir atoms on Ir surfaces, Phys. Rev. B43, 2007 (1991).ADSGoogle Scholar
  62. 62.
    J. D. Wrigley, M. E. Twigg, and G. Ehrlich, Lattice walks by long jumps, J. Chem. Phys. 93, 2885 (1990).MathSciNetADSCrossRefGoogle Scholar
  63. 63.
    S. G Wang, J. D. Wrigley, and G. Ehrlich, Atomic jump lengths in surface diffusion: Re, Mo, Ir, and Rh on W(211), J. Chem. Phys. 91, 5087 (1989).ADSCrossRefGoogle Scholar
  64. 64.
    D. G Senft, Personal Communication (1995).Google Scholar
  65. 65.
    D. C. Senft, Atomic jump length in surface diffusion: experiment and theory, Appl. Surf. Sci. 94/95, 231 (1996).ADSCrossRefGoogle Scholar
  66. 66.
    R. Ferrando, R. Spadacini, and G. E. Tommei, Kramer’s problem in periodic potentials: Jump rate and jump lengths, Phys. Rev. E48, 2437 (1993).ADSGoogle Scholar
  67. 67.
    Y. Georgievskii and E. Pollak, Semiclassical theory of activated diffusion, Phys. Rev. E49, 5098 (1994).ADSGoogle Scholar
  68. 68.
    Y. Georgievskii, M. A. Kozhushner, and E. Pollak, Activated surface diffusion: are correlated hops the rule or the exception? J. Chem. Phys. 102, 6908 (1995).ADSCrossRefGoogle Scholar
  69. 69.
    For intriguing curve fitting, see Y. Georgievsjii and E. Pollak, Long hops of an adatom on a surface, Surf. Sci 355, L366 (1996).CrossRefGoogle Scholar
  70. 70.
    M. F. Lovisa, Personal Communication (1994).Google Scholar
  71. 71.
    S. J. Koh and G. Ehrlich, Diffusion of single Pd atoms on W(110), Abstract, AVS 43rd National Symposium (1996).Google Scholar
  72. 72.
    G. Ehrlich and K. Stolt, Surface diffusion of metal clusters on metals, in Growth and Properties of Metal Clusters, edited by J. Bourdon (Elsevier, Amsterdam, 1980), p. 1.Google Scholar
  73. 73.
    S. C. Wang and G. Ehrlich, Cluster motion on metals: Ir on Ir(111), J. Chem. Phys. 91, 6535 (1989).ADSCrossRefGoogle Scholar
  74. 74.
    S. C. Wang and G. Ehrlich, Structure, stability, and surface diffusion of clusters: Irx on Ir(111), Surf. Sci. 239, 301 (1990).ADSCrossRefGoogle Scholar
  75. 75.
    C.-L. Liu and J. B. Adams, Structure and diffusion of clusters on Ni surfaces, Surf. Sci. 268, 73 (1992).ADSCrossRefGoogle Scholar
  76. 76.
    G. L. Kellogg and A. F. Voter, Surface diffusion modes for Pt dimers and trimers on Pt(001), Phys. Rev. Lett. 67, 622 (1991).ADSCrossRefGoogle Scholar
  77. 77.
    C. L. Chen and T. T. Tsong, Observation of two diffusion modes of a Re-Ir dimer-vacancy complex on the Ir(001) surface and their diffusion mechanisms, Phys. Rev. Lett. 72, 498 (1994).ADSCrossRefGoogle Scholar
  78. 78.
    C. L. Chen, T. T. Tsong, and T. E. Mitchell, Surface diffusion and surface roughness on Ir(001) surface and terraces, Appl Surf. Sci. 94/95, 224 (1996).CrossRefGoogle Scholar
  79. 79.
    H.-W. Fink and G. Ehrlich, Rhenium on W(110): Structure and mobility of higher clusters, Surf. Sci. 150, 419 (1985).ADSCrossRefGoogle Scholar
  80. 80.
    G. L. Kellogg, Oscillatory behavior in the size dependence of cluster mobility on metal surfaces: Rh on Rh(100), Phys. Rev. Lett. 73, 1833 (1994).ADSCrossRefGoogle Scholar
  81. 81.
    Z.-P. Shi, Z. Zhang, A. K. Swan, and J. F. Wendelken, Dimer shearing as a novel mechanism for cluster diffusion and dissociation on metal (100) surfaces, Phys. Rev. Lett. 76, 4927 (1996).ADSCrossRefGoogle Scholar
  82. 82.
    G. Ehrlich, Layer growth — an atomic picture, in Proc. 9th Internat’l Vacuum Cong, and 5th Internat’l Conf. on Solid Surfaces, Invited Speakers’ Volume, edited by J. L. deSegovia (ASEVA, Madrid, 1983), p. 3.Google Scholar
  83. 83.
    G. Ehrlich, An atomic view of crystal growth, in Chemistry and Physics of Solid SurfacesV, edited by R. Vanselow and R. Howe (Springer-Verlag, Berlin, 1984), p.282.Google Scholar
  84. 84.
    H.-W. Fink, Direct observation of atomic motion on surfaces, in Diffusion at Interfaces — Microscopic Concepts, edited by M. Grunze, H. J. Kreuzer and J. J. Weimer, Springer-Verlag, Berlin (1988), p. 75.CrossRefGoogle Scholar
  85. 85.
    J.-M. Wen, S.-L. Chang, J. W. Burnett, J. W. Evans, and P. A. Thiel, Diffusion of large two-dimensional Ag clusters on Ag(100), Phys. Rev. Lett. 73, 2591 (1994).ADSCrossRefGoogle Scholar
  86. 86.
    K. Morgenstern, G. Rosenfeld, B. Poelsema, and G. Comsa, Brownian motion of vacancy islands on Ag(111), Phys. Rev. Lett. 74, 2058 (1995).ADSCrossRefGoogle Scholar
  87. 87.
    G. Rosenfeld, Brownian motion of vacancy islands on Ag(111), Bull. Am. Phys. Soc. 41, 681 (1996) Abstract Q3 1.Google Scholar
  88. 88.
    J. C. Hamilton, M. S. Daw, and S. M. Foiles, Dislocation mechanism for island diffusion on fcc(111) surfaces, Phys. Rev. Lett. 74, 2760 (1995).ADSCrossRefGoogle Scholar
  89. 89.
    J. C. Hamilton, Magic size effects for heteroepitaxial island diffusion, Phys. Rev. Lett. 77, 885 (1996).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Gert Ehrlich
    • 1
  1. 1.Materials Research Laboratory and Department of Materials Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations