Enhanced Layer Growth of GaAs: Sn

  • S. M. Seutter
  • A. M. Dabiran
  • P. I. Cohen
Part of the NATO ASI Series book series (NSSB, volume 360)


We have investigated the surface morphology of GaAs(100) during growth by molecular beam epitaxy in the presence of submonolayer coverages of Sn. Sn submonolayers segregate to the surface during growth and cause the measured reflection high-energy electron diffraction, intensity oscillations to continue long past that observed on pure GaAs. Atomic force microscopy in air and scanning tunneling microscopy have been used to examine these surfaces prior to growth, during growth, and after heating in vacuum in order to determine the changes in surface morphology contributing to this behavior. The major role of the Sn coverage is to remove the surface anisotropy usually observed in GaAs(100) growth and to increase the stability of islands. The strain induced by Sn in substitutional Ga sites destabilizes these islands and tends to limit their size. During growth, nucleation on these small islands is less likely, leading to an enhancement in the layer growth.


Atomic Force Microscopy Atomic Force Microscopy Image Scanning Tunneling Microscopy Small Island Scanning Tunneling Microscopy Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Kandel and T. Kaxiras, these proceedings, 1997.Google Scholar
  2. 2.
    G.S. Petrich, A.M. Dabiran, J.E. Macdonald, and P.I. Cohen, J. Vac. Sci. Technol., B9 (1991) 2150.Google Scholar
  3. 3.
    G.S. Petrich, A.M. Dabiran, and P.I. Cohen, Appl. Phys. Lett., 61 (1992) 162.ADSCrossRefGoogle Scholar
  4. 4.
    S.M. Seutter, A.M. Dabiran, and P.I. Cohen, presented at the National Symposium of the Materials Research Society, Boston, 1996.Google Scholar
  5. 5.
    J.J. Harris, D.E. Ashenford, C.T. Foxon, P.J. Dobson, and B.A. Joyce, Appl. Phys. A 33 (1984) 87.ADSCrossRefGoogle Scholar
  6. 6.
    A. Rockett. S.A. Barnett, J.E. Greene, J. Knall, and J.E. Sundgren, J. Vac. Sci. Technol., A3 (1985) 855.ADSGoogle Scholar
  7. 7.
    S. Andrieu, F. Arnaud d’Avitaya, J.C. Pfister, J. Appl. Phys. 65 (1989) 2681.ADSCrossRefGoogle Scholar
  8. 8.
    Y. Horio and A. Ichimiya, Surf. Sci. 298 (1993) 261.ADSCrossRefGoogle Scholar
  9. 9.
    P.I. Cohen, G.S. Petrich, P.R. Pukite, G.J. Whaley, and A.S. Arrott, Surf. Sci., 216 (1989) 222.ADSCrossRefGoogle Scholar
  10. 10.
    Diffraction from rough surfaces and dynamic growth fronts, by H.-N. Yang, G.-C. Wang, and T.-M. Lu, World Scientific, 1993.Google Scholar
  11. 11.
    V. Bressler-Hill, R. Maboudian, M. Wassermeier, X.-S. Wang, K. Pond, P.M. Petroff, W.H. Weinberg, Surf. Sci., 287/288 (1993) 514.CrossRefGoogle Scholar
  12. 12.
    Materials fundamentals of Molecular Beam Epitaxy, by J.Y. Tsao, Academic Press, Boston, 1993.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • S. M. Seutter
    • 1
  • A. M. Dabiran
    • 1
  • P. I. Cohen
    • 1
  1. 1.Department of Electrical EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations