A Local View of Bonding and Diffusion at Metal Surfaces

  • Peter J. Feibelman
Part of the NATO ASI Series book series (NSSB, volume 360)

Abstract

First-principles density functional calculations and corresponding experimental results underline the importance of basic chemical concepts, such as coordination, valence saturation and promotion-hybridization energetics, in understanding bonding and diffusion of atoms at and on metal surfaces. Several examples are reviewed, including outer-layer relaxations of clean hcp(0001) surfaces, liquid-metal-embrittlement energetics, separation energies of metal-adatom dimers, concerted substitutional self-diffusion on fcc(001) surfaces, and adsorption and diffusion barrier sites for adatoms near steps.

Keywords

Surface Atom Local Density Approximation Step Edge Liquid Metal Embrittlement Transition Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).MathSciNetADSCrossRefGoogle Scholar
  2. W. Kohn and L. J. Sham, Phys. Rev. 110, A1133 (1965).MathSciNetCrossRefGoogle Scholar
  3. for a review, see The Theory of the Inhomogeneous Electron Gas, S. Lundqvist and N. H. March, eds., Springer Science+Business Media New York (1983); for an extensive discussion of numerical methods.Google Scholar
  4. see also, W. E. Pickett, Comp. Phys. Rep. 9, 115 (1989).ADSCrossRefGoogle Scholar
  5. 2.
    O. K. Andersen, Phys. Rev. B12, 3060 (1975).ADSGoogle Scholar
  6. D. R. Hamann, Phys. Rev. Lett. 42, 662 (1979).ADSCrossRefGoogle Scholar
  7. L. F. Mattheiss and D. R. Hamann, Phys. Rev. B33, 823 (1986).ADSGoogle Scholar
  8. 3.
    A. R. Williams, P. J. Feibelman and N. D. Lang, Phys. Rev. B26, 5433 (1982).ADSGoogle Scholar
  9. P. J. Feibelman, Phys. Rev. B35, 2626 (1987).ADSGoogle Scholar
  10. P. J. Feibelman, Phys. Rev. B39, 4866 (1989).ADSGoogle Scholar
  11. 4.
    H. L. Davis, J. B. Hannon, K. B. Ray and E. W. Plummer, Phys. Rev. Lett. 68, 2632 (1992).ADSCrossRefGoogle Scholar
  12. 5.
    P. J. Feibelman, Phys. Rev. B46, 2532 (1992).ADSGoogle Scholar
  13. 6.
    R. Stumpf and P. J. Feibelman, Phys. Rev. B51, 13748 (1995).ADSGoogle Scholar
  14. N. A. W. Holzwarth and Y. Zeng, Phys. Rev. B51, 13653 (1995).ADSGoogle Scholar
  15. 7.
    A. F. Wright, P. J. Feibelman and S. R. Atlas, Surf. Sci. 302, 215 (1994).ADSCrossRefGoogle Scholar
  16. P. T. Sprunger, K. Pohl, H. L. Davis and E. W. Plummer, Surf. Sci. 297, L48 (1993).CrossRefGoogle Scholar
  17. 8.
    P. J. Feibelman, Phys. Rev. B53, 13740 (1996).ADSGoogle Scholar
  18. 9.
    R. Stumpf and P. J. Feibelman, Phys. Rev. B54, 5145 (1996).ADSGoogle Scholar
  19. 10.
    P. J. Feibelman, Phys. Rev. Lett. 58, 2766 (1987).ADSCrossRefGoogle Scholar
  20. 11.
    P. J. Feibelman, Phys. Rev. Lett. 65, 729 (1990).ADSCrossRefGoogle Scholar
  21. 12.
    G. L. Kellogg and P. J. Feibelman, Phys. Rev. Lett. 64, 3143 (1990).ADSCrossRefGoogle Scholar
  22. C. Chen and T. T. Tsong, Phys. Rev. Lett. 64, 3147 (1990).ADSCrossRefGoogle Scholar
  23. 13.
    P. J. Feibelman, Phys. Rev. Lett. 69, 1568 (1992). H, A1/A1(331).ADSCrossRefGoogle Scholar
  24. 14.
    P. J. Feibelman, Phys. Rev. B49, 14632 (1994).ADSGoogle Scholar
  25. 15.
    P. J. Feibelman, S. Esch and T. Michely, Phys. Rev. Lett. 77, 2257 (1996).ADSCrossRefGoogle Scholar
  26. 16.
    M. S. Daw and M. I. Baskes, Phys. Rev. B29, 6443 (1984).ADSGoogle Scholar
  27. 17.
    J. K. Nørskov and N. D. Lang, Phys. Rev. B21, 2131 (1980).ADSGoogle Scholar
  28. M. J. Stott and E. Zaremba, Sol. St. Comm. 32, 1297 (1979), Phys. Rev. B22, 1564 (1980).ADSCrossRefGoogle Scholar
  29. 18.
    L. Hansen, P. Stoltze, K. W. Jacobsen and J. K. Nørskov, Phys. Rev. B44, 6523 (1991).ADSGoogle Scholar
  30. 19.
    L. Pauling, The Nature of the Chemical Bond, Cornell Univ. Press, Ithaca, NY (1960), 3rd ed.Google Scholar
  31. 20.
    S. Saebø and P. Pulay, Ann. Rev. Phys. Chem. 44, 213 (1993).ADSCrossRefGoogle Scholar
  32. 21.
    See, e.g., J. Andzelm and E. Wimmer, J. Chem. Phys. 96, 1280 (1992).ADSCrossRefGoogle Scholar
  33. C. W. Murray, G. J. Lamming, N. C. Handy and R. D. Amos, Chem. Phys. Lett. 199, 551 (1992).ADSCrossRefGoogle Scholar
  34. B. G. Johnson, P. M. W. Gill and J. A. Pople, J. Chem. Phys. 98, 5612 (1993).ADSCrossRefGoogle Scholar
  35. 22.
    See E. B. Stechel, A. R. Williams and P. J. Feibelman, Phys. Rev. B49, 10088 (1994), and references therein.ADSGoogle Scholar
  36. 23.
    See, e.g., A. R. Williams and U. von Barth, in The Theory of the Inhomogeneous Electron Gas, op. cit., pp. 189-308;.Google Scholar
  37. R. O. Jones, in Many-Body Phenomena at Surfaces, D. Langreth and H. Suhl, eds., Academic Press, Orlando (1984), pp. 175–188.Google Scholar
  38. 24.
    See, e.g. P. Gianozzi, S. deGironcoli, P. Pavone and S. Baroni, Phys. Rev. B43, 7231 (1991).ADSGoogle Scholar
  39. S. Wei and M. Y. Chou, Phys. Rev. Lett. 69, 2799 (1992).ADSCrossRefGoogle Scholar
  40. A. A. Quong and B. M. Klein, Phys. Rev. B46, 10734 (1992).ADSGoogle Scholar
  41. 25.
    P. J. Feibelman, Surf. Sci. 313, L801 (1994).ADSCrossRefGoogle Scholar
  42. P. J. Feibelman, G. L. Kellogg and J. S. Nelson, Phys. Rev. B49, 10548 (1994).ADSGoogle Scholar
  43. G. Boisvert, L. J. Lewis, M. J. Puska and R. M. Niemenen, Phys. Rev. B52, 9078 (1995).ADSGoogle Scholar
  44. 26.
    J. P. Perdew, et al., Phys. Rev. B46, 6671 (1992).ADSGoogle Scholar
  45. J. P. Perdew and Y Wang, Phys. Rev. B33, 8822 (1986).ADSGoogle Scholar
  46. J. Perdew, in Electronic Structure of Solids’ 91, P. Ziesche and H. Eschrig, eds., Akademie Verlag, Berlin (1991);.Google Scholar
  47. A. D. Becke, Phys. Rev. A38, 3098 (1988).ADSGoogle Scholar
  48. 27.
    A. García, C. Elsässer, X. Zhu, S. G. Louie and M. L. Cohen, Phys. Rev. B46, 9829 (1992). [Erratum: Phys. Rev. B47, 4150 (1993).ADSGoogle Scholar
  49. 28.
    M. P. Sears, P. A. Schultz and P. J. Feibelman, unpublished.Google Scholar
  50. 29.
    M. W. Finnis and V. Heine, J. Phys. F4, L37 (1974).ADSCrossRefGoogle Scholar
  51. 30.
    R. Smoluchowski, Phys. Rev. 60, 661 (1941).ADSMATHCrossRefGoogle Scholar
  52. 31.
    Reanalysis of the Be data suggests that the ultimate experimental value of the outer layer separation may be as small as 3.5%, in better agreement with the LDA calculations of Ref.’s 5 and 6, according to K. Pohl and E. W. Plummer (private communication).Google Scholar
  53. 32.
    P. Jiang, P. M. Marcus and F. Jona, Sol. St. Comm. 59, 275 (1986); Sol. St. Comm. 32, 1297 (1979.ADSCrossRefGoogle Scholar
  54. 33.
    For a review, see A. R. C. Westwood, C. M. Preece and M. H. Kamdar, in Fracture, An Advanced Treatise, H. Liebowitz, ed., Academic Press, New York (1971) Vol. III, Chapter 10.Google Scholar
  55. 34.
    C. F. Old and P. Trevena, Metal Science 13, 591 (1979).CrossRefGoogle Scholar
  56. 35.
    A. R. C. Westwood, C. M. Preece and M. H. Kamdar, Amer. Soc. Met. Trans. 60, 723 (1967).Google Scholar
  57. 36.
    A. A. Griffith, Phil. Trans. Roy. Soc. (London) A221, 163 (1920).ADSGoogle Scholar
  58. for an extended discussion, see B. R. Lawn and T. R. Wilshaw, Fracture of Brittle Solids, Cambridge Univ. Press, Cambridge (1975).Google Scholar
  59. 37.
    Y. Waseda and K. Suzuki, Phys. Stat. Sol. 49, 339 (1972).ADSCrossRefGoogle Scholar
  60. 38.
    For an alternate picture, see J. Hafner and V. Heine, J. Phys. F13, 2479 (1983).ADSCrossRefGoogle Scholar
  61. 39.
    See L. Brewer, in Alloying, J. L. Walter, M. R. Jackson and C. T. Sims, eds., ASM International, Metals Park Ohio (1988), pp. 1-28.Google Scholar
  62. 40.
    C. E. Moore, Atomic Energy Levels, Circ. of the Nat’l. Bur. of Standards 467, U. S. Gov’t Printing Office, Washington, D.C. (1949).Google Scholar
  63. 41.
    An extensive list of references is provided in Ref. 10.Google Scholar
  64. 42.
    This “skyhook” effect, in H-enhanced diffusion of Be on Be(0001), has recently been found to reduce the diffusion barrier by a factor of 3.Google Scholar
  65. See R. Stumpf, Phys. Rev. B53, R4253 (1996).ADSGoogle Scholar
  66. 43.
    R. L. Schwoebel and E. J. Shipsey, J. Appl. Phys. 37, 3682 (1966).ADSCrossRefGoogle Scholar
  67. 44.
    R. Stumpf and M. Scheffler, Phys. Rev. Lett. 72, 254 (1995).ADSCrossRefGoogle Scholar
  68. 45.
    For a comprehensive, recent review of the experimental situation, see G. L. Kellogg, Surf. Sci. Repts. 21, 1 (1994).ADSCrossRefGoogle Scholar
  69. 46.
    A diffusion barrier of 0.27±0.004 eV has been reported for Ir diffusion on Ir(111) by S. C. Wang and G. Ehrlich, Phys. Rev. Lett. 62, 2297 (1989).ADSCrossRefGoogle Scholar
  70. C. L. Chen and T. T. Tsong, Phys. Rev. B41, 12403 (1990) obtain 0.22±0.03 eV for the same quantity.ADSGoogle Scholar
  71. 47.
    P. J. Feibelman, G. L. Kellogg and J. S. Nelson, Phys. Rev. B49, 10548 (1994).ADSGoogle Scholar
  72. A virtually identical barrier height is obtained by M. Bott, M. Hohage, M. Morgenstern, T. Michely and G. Comsa, Phys. Rev. Lett. 76, 1304 (1996), via an STM analysis.ADSCrossRefGoogle Scholar
  73. 48.
    G. L. Kellogg, Phys. Rev. Lett. 67, 216 (1991).ADSCrossRefGoogle Scholar
  74. T. T. Tsong and C. Chen, Phys. Rev. B43, 2007 (1991).ADSGoogle Scholar
  75. D. W. Bassett and P. R. Webber Surf. Sci. 70, 520 (1978).ADSCrossRefGoogle Scholar
  76. J. D. Wrigley and G. Ehrlich, Phys. Rev. Lett. 44, 661 (1980) gave reason to believe that substitutional diffusion occurs on fcc(110) surfaces; but in this earlier work, the possiblity that the substitution might be concerted was not considered.ADSCrossRefGoogle Scholar
  77. 49.
    See, e.g., P. Sautet, J. C. Dunphy, D. F. Ogletree, C. Joachim and M. Salmeron, Surf. Sci. 315, 127 (1994).ADSCrossRefGoogle Scholar
  78. 50.
    E. Hahn, H. Schief, V. Marsico, A. Fricke and K. Kern, Phys. Rev. Lett. 72, 3378 (1994), and references therein.ADSCrossRefGoogle Scholar
  79. 51.
    S. Esch, M. Hohage, T. Michely and G. Comsa, Phys. Rev. Lett. 27, 518 (1994).ADSCrossRefGoogle Scholar
  80. 52.
    See, e.g., J. Xu and J. T. Yates, Jr., J. Chem. Phys. 99, 725 (1993).ADSCrossRefGoogle Scholar
  81. 53.
    J. L. Gland and V. N. Korchak, Surf. Sci. 75, 733 (1978).ADSCrossRefGoogle Scholar
  82. 54.
    H. Wang, G. B. Fisher, C. L. DiMaggio and D. L. Lambert, Surf. Sci. (submitted).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Peter J. Feibelman
    • 1
  1. 1.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations