Kinetic Coefficients in a System Far from Equilibrium

  • Paolo Politi
  • Jacques Villain
Part of the NATO ASI Series book series (NSSB, volume 360)


The kinetic coefficients in a growing surface are very different from their equilibrium values. Assuming deposition of particles from a beam on an initially flat surface of high symmetry orientation and neglecting evaporation, the kinetic coefficients K 0 and λ0 relevant at the beginning of the growth are evaluated in 1+1 and 2+1 dimensions. K 0 is the sum of three terms: i) a term coming from an “equilibrium” chemical potential, which vanishes with temperature but diverges at low flux in the case of a singular surface; ii) a term, whose origin is the random character of nucleation, which depends only on the beam intensity and the diffusion constant but is independent of the atomic distance; iii) a term deriving from the fluctuations of the diffusion current, which depends on the beam intensity, the diffusion length, and the atomic distance and, in 1+1 dimensions, only depends on the temperature through the diffusion length. The validity of a linear equation is limited to small slopes |m| < 1/ℓ c , where ℓ c is the maximum terrace width.


Beam Intensity Free Energy Density Atomic Distance Kinetic Coefficient Small Slope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Brenig, Statistical Theory of Heat, Nonequilibrium Phenomena (Springer, Berlin 1989).CrossRefGoogle Scholar
  2. 2.
    I. Elkinani and J. Villain, J. de Physique I 1, 1991 (1994).Google Scholar
  3. 3.
    A.W. Hunt, C. Orme, Williams, B. G. Orr, and L.M. Sander, Europhys. Lett. 27, 611 (1994).ADSCrossRefGoogle Scholar
  4. 4.
    P. Politi and J. Villain, Phys. Rev. B 54, 5114 (1996).ADSCrossRefGoogle Scholar
  5. 5.
    W.K. Burton, N. Cabrera, and F. Frank, Phil. Trans. Roy. Soc. 243, 299 (1951).MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    J. Villain, J. de Physique I 1, 19 (1991).ADSCrossRefGoogle Scholar
  7. 7.
    J. Villain and A. Pimpinelli, Physique de la Croissance Cristalline, Eyrolles-Alea-Saclay, Paris (1994) and english version, to be published.Google Scholar
  8. 8.
    G. Ehrlich and F.G. Hudda, J. Chem. Phys. 44, 1039 (1966).ADSCrossRefGoogle Scholar
  9. 9.
    R.L. Schwoebel and E.J. Shipsey, J. Appl. Phys. 37, 3682 (1966).ADSCrossRefGoogle Scholar
  10. 10.
    M. Siegert and M. Plischke, Phys. Rev. Lett. 73, 1517 (1994).ADSCrossRefGoogle Scholar
  11. 11.
    G. Zinnsmeister, Thin solid films 2, 497 (1968); ibid., 7, 51 (1971).ADSCrossRefGoogle Scholar
  12. 12.
    J.A. Venables, G.D. Spiller, and M. Hanbücken, Rep. Prog. Phys. 47, 399 (1984).ADSCrossRefGoogle Scholar
  13. 13.
    S. Stoyanov and D. Kashchiev, in Current topics in material science Vol. 7, Ed. E. Kaldis (North Holland, 1981), p. 69.Google Scholar
  14. 14.
    J. Villain, A. Pimpinelli, L.H. Tang, and D. Wolf, J. de Physique I 2, 2107 (1992).ADSCrossRefGoogle Scholar
  15. 15.
    J.W. Evans and M.C. Bartelt, Surface Sci. 284, L437 (1993).CrossRefGoogle Scholar
  16. 16.
    E. Somfai, D.E. Wolf, and J. Kertész, J. Physique I 6, 393 (1996).ADSCrossRefGoogle Scholar
  17. 17.
    T. Sun, H. Guo, and M. Grant, Phys. Rev. A 40, 6763 (1989).ADSCrossRefGoogle Scholar
  18. 18.
    J. Krug, Adv. Phys. (in press).Google Scholar
  19. 19.
    J. Amar and F. Family, (1995) preprint.Google Scholar
  20. 20.
    P. Stoltze, J. Phys.: Condens. Matter 6, 9495 (1994).ADSCrossRefGoogle Scholar
  21. 21.
    E.E. Gruber and W.W. Mullins, J. Phys. Chem. Solids 28, 875 (1967).ADSCrossRefGoogle Scholar
  22. 22.
    V.L. Pokrovsky and A.L. Talapov, Phys. Rev. Lett. 42, 65 (1979).ADSCrossRefGoogle Scholar
  23. 23.
    F.D.M. Haldane and J. Villain, J. Physique 42,1673 (1981).Google Scholar
  24. 24.
    D.D. Vvedensky, A. Zangwill, C.N. Luse, and M.R. Wilby, Phys. Rev. E 48, 852 (1993).ADSCrossRefGoogle Scholar
  25. 25.
    J. Krug, H.T. Dobbs and S. Majaniemi, Z. Phys. B 97, 281 (1995).ADSCrossRefGoogle Scholar
  26. S. Majaniemi, T. Ala-Nissila, and J. Krug, Phys. Rev. B 53, 8071 (1996).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Paolo Politi
    • 1
  • Jacques Villain
    • 2
  1. 1.Département de Recherche Fondamentale sur la Matière Condensée, SPMM/MPCEAGrenoble Cedex 9France
  2. 2.Département de Recherche Fondamentale sur la Matière Condensée, SPSMSCEAGrenoble Cedex 9France

Personalised recommendations