Surface Diffusion in Metal Epitaxy — Strain Effects

  • H. Brune
  • K. Bromann
  • K. Kern
Part of the NATO ASI Series book series (NSSB, volume 360)


A method is presented to measure both the barriers for intra- and interlayer diffusion for an epitaxial system with great accuracy. It is based upon the application of mean-field nucleation theory to variable temperature STM data. The validity and limits of applying nucleation theory to extract barriers for terrace diffusion are discussed in comparison to alternative methods like Kinetic Monte-Carlo (KMC) simulations. With this approach, a pronounced influence of strain on intra- and interlayer diffusion was established for Ag self diffusion on strained and unstrained Ag(111) surfaces. The strained surface was the pseudomorphic Ag monolayer on Pt(111) which is under 4.3% compressive strain. The barrier for terrace diffusion is observed to be substantially lower on the strained, compared to the unstrained Ag/Ag(111) case, 60±10 meV and 97±10 meV, respectively. A general method for the quantitative determination of the additional barrier for descending at steps is presented. It is based on the measurement of the nucleation rate on top of previously prepared adlayer islands as a function of island size and temperature. Application of this method reveals a considerable effect of strain also on interlayer diffusion. The additional barrier for interlayer diffusion decreases from 120±15 meV for Ag(111) homoepitaxy to only 30±5 meV for diffusion from the strained Ag layer down to the Pt(111) substrate. These examples illustrate the strong influence of strain on the intra- and interlayer mass transport which leads to a new concept of layer-dependent nucleation kinetics for heteroepitaxial systems. Finally, we discuss the relation between corner diffusion and island shapes. Low temperature aggregation on hexagonally close-packed metal surfaces generally is dominated by the microscopic difference between two edge orientations giving rise to anisotropic corner (and edge) diffusion. It is demonstrated how this anisotropy gives rise to dendritic island shapes with trigonal symmetry.


Scanning Tunneling Microscopy Scanning Tunneling Microscopy Image Island Size Attempt Frequency Diffusion Limited Aggregation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Ehrlich and F. G. Hudda, J. Chem. Phys. 44, 1039 (1966).ADSCrossRefGoogle Scholar
  2. 2.
    R. L. Schwoebel and E. J. Shipsey, J. Appl. Phys. 37, 3682 (1966).ADSCrossRefGoogle Scholar
  3. 3.
    J. Jacobsen, K. W. Jacobsen, P. Stoltze, and J. K. Nørskov, Phys. Rev. Lett. 74, 2295 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    S. V. Ghaisas, Surf. Sci. 223, 441 (1989).ADSCrossRefGoogle Scholar
  5. 5.
    C. Roland and G. H. Gilmer, Phys. Rev. B 46, 13428 (1992).ADSCrossRefGoogle Scholar
  6. 6.
    C. Ratsch and A. Zangwill, Appl. Phys. Lett. 63, 2348 (1993).ADSCrossRefGoogle Scholar
  7. 7.
    H. Spjut and D. A. Faux, Surf. Sci. 306, 233 (1994).ADSCrossRefGoogle Scholar
  8. 8.
    J. A. Meyer, P. Schmid, and R. J. Behm, Phys. Rev. Lett. 74, 3864 (1995).ADSCrossRefGoogle Scholar
  9. 9.
    H. Brune, K. Bromann, H. Röder, K. Kern, J. Jacobsen, P. Stolze, K. Jacobsen, and J. Nørskov, Phys. Rev. B 52, R14380 (1995).ADSCrossRefGoogle Scholar
  10. 10.
    K. Bromann, H. Brune, H. Röder, and K. Kern, Phys. Rev. Lett. 75, 677 (1995).ADSCrossRefGoogle Scholar
  11. 11.
    H. Röder, K. Bromann, H. Brune, and K. Kern, Surf. Sci. submitted (1996).Google Scholar
  12. 12.
    J. A. Venables, Philos. Mag. 17, 697 (1973).ADSCrossRefGoogle Scholar
  13. 13.
    J. A. Venables, G. D. T. Spiller, and M. Hanbücken, Rep. Prog. Phys. 47, 399 (1984).ADSCrossRefGoogle Scholar
  14. 14.
    H. Brune, H. Röder, C. Boragno, and K. Kern, Phys. Rev. Lett. 73, 1955 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    J. A. Stroscio and D. T. Pierce, Phys. Rev. B 49, 8522 (1994).ADSCrossRefGoogle Scholar
  16. 16.
    J. Tersoff, A. W. D. v. d. Gon, and R. M. Tromp, Phys. Rev. Lett. 72, 266 (1994).ADSCrossRefGoogle Scholar
  17. 17.
    H. Brune, C. Romainczyk, H. Röder, and K. Kern, Nature 369, 469 (1994).ADSCrossRefGoogle Scholar
  18. 18.
    H. Brune, K. Bromann, J. Jacobsen, K. Jacobsen, P. Stoltze, J. Nörskov, and K. Kern, Surf. Sci. Lett. 349, L115 (1996).CrossRefGoogle Scholar
  19. 19.
    H. Brune, H. Röder, C. Romainczyk, C. Boragno, and K. Kern, Appl. Phys. A 60, 167 (1995).ADSCrossRefGoogle Scholar
  20. 20.
    H. Brune, H. Röder, G. Boragno, and K. Kern, Phys. Rev. B 49, 2997 (1994).ADSCrossRefGoogle Scholar
  21. 21.
    C. Romainczyk, M. Krzyzowski, P. Zeppenfeld, G. Comsa, and K. Kern, to be published.Google Scholar
  22. 22.
    G. Ehrlich, Surf. Sci. 246, 1 (1991).ADSCrossRefGoogle Scholar
  23. 23.
    G. L. Kellogg, Surf. Sci. Rep. 21, 1 (1994).ADSCrossRefGoogle Scholar
  24. 24.
    J. A. Stroscio, D. T. Pierce, and R. A. Dragoset, Phys. Rev. Lett. 70, 3615 (1993).ADSCrossRefGoogle Scholar
  25. 25.
    M. Bott, T. Michely, and G. Comsa, Surf. Sci. 272, 161 (1992).ADSCrossRefGoogle Scholar
  26. 26.
    H. Röder, H. Brune, J. P. Bucher, and K. Kern, Surf. Sci. 298, 121 (1993).CrossRefGoogle Scholar
  27. 27.
    M. Bott, M. Hohage, M. Morgenstern, T. Michely, and G. Comsa, Phys. Rev. Lett. 76, 1304 (1995).ADSCrossRefGoogle Scholar
  28. 28.
    H. Röder, E. Hahn, H. Brune, J. P. Bucher, and K. Kern, Nature 366, 141 (1993).ADSCrossRefGoogle Scholar
  29. 29.
    H. Brune, S. Bales, J. Jacobsen, C. Boragno, and K. Kern, to be published.Google Scholar
  30. 30.
    B. Müller, B. Fischer, L. Nedelmann, H. Brune, and K. Kern, Phys. Rev. B submitted (1996).Google Scholar
  31. 31.
    G. S. Bales and D. C. Chrzan, Phys. Rev. B 50, 6057 (1994).ADSCrossRefGoogle Scholar
  32. 32.
    M. C. Bartelt and J. W. Evans, Phys. Rev. B 46, 12675 (1992).ADSCrossRefGoogle Scholar
  33. 33.
    D. E. Wolf, in Scale Invariance, Interfaces, and Non-Equilibrium Dynamics, vol. M. Droz, K. J. McKane, J. Vannimenus, and D. E. Wolf, Eds., Plenum, New York, (1994), p 1.Google Scholar
  34. 34.
    J. G. Amar, F. Family, and P. M. Lam, Phys. Rev. B 50, 8781 (1994).ADSCrossRefGoogle Scholar
  35. 35.
    J. G. Amar and F. Family, Phys. Rev. Lett. 74, 2066 (1995).ADSCrossRefGoogle Scholar
  36. 36.
    G. Zinsmeister, Thin Solid Films 7, 51 (1971).ADSCrossRefGoogle Scholar
  37. 37.
    M. J. Stowell, Phil. Mag. 26, 349 (1972).ADSCrossRefGoogle Scholar
  38. 38.
    J. W. Evans and M. C. Bartelt, J. Vac. Sci. Technol. A 12, 1800 (1994).ADSGoogle Scholar
  39. 39.
    J. P. Bucher, E. Hahn, P. Fernandez, C. Massobrio, and K. Kern, Europhys. Lett. 27, 473 (1994).ADSCrossRefGoogle Scholar
  40. 40.
    S. Günther, E. Kopatzki, M. C. Bartelt, J. W. Evans, and R. J. Behm, Phys. Rev. Lett. 73, 553 (1994).ADSCrossRefGoogle Scholar
  41. 41.
    T. R. Linderoth, J. J. Mortensen, K. W. Jacobsen, E. Laegsgaard, I. Stensgaard, and F. Besenbacher, Phys. Rev. Lett. 77, 87 (1996).ADSCrossRefGoogle Scholar
  42. 42.
    T. Härtel, U. Strüber, and J. Küppers, Thin Sol. Films 229, 163 (1993).CrossRefGoogle Scholar
  43. 43.
    G. Rangelov, T. Fauster, U. Strüber, and J. Küppers, Surf. Sci. (Proc. ECOSS-14) 331-333, 948 (1995).Google Scholar
  44. 44.
    Notice, the first monolayer of Ag on Pt(111) grows only pseudomorphic when either completed or present as small islands. When the islands reach a certain size the formation of dislocations is observed. Interestingly, these dislocations disappear again upon completion of the first layer.Google Scholar
  45. 45.
    C. Romainczyk, Ph. D. Thesis, Ecole Polytechnique Fédérale de Lausanne, (1994).Google Scholar
  46. 46.
    K. W. Jacobsen, J. K. Nørskov, and M. J. Puska, Phys. Rev. B 35, 7423 (1987).ADSCrossRefGoogle Scholar
  47. 47.
    P. Stoltze, J. Phys. Condens. Matter 6, 9495 (1994).ADSCrossRefGoogle Scholar
  48. 48.
    P. J. Feibelman, Surf. Sci. 313, L801 (1994).ADSCrossRefGoogle Scholar
  49. 49.
    C. Ratsch and M. Scheffler (private communication).Google Scholar
  50. 50.
    P. J. Feibelman, J. S. Nelson, and G. L. Kellogg, Phys. Rev. B 49, 10548 (1994).ADSCrossRefGoogle Scholar
  51. 51.
    J. J. Mortensen, B. Hammer, O. H. Nielsen, K. W. Jacobsen and J. K. Nørskov, in Solid State Sciences Series, vol. 121, A. Okiji, Eds. (Springer, 1996).Google Scholar
  52. 52.
    P. A. Mulheran and J. A. Blackman, Phil. Mag. Lett. 72, 55 (1995).ADSCrossRefGoogle Scholar
  53. 53.
    H. A. v. d. Vegt, H. M. v. Pinxteren, M. Lohmeier, E. Vlieg, and J. M. Thornton, Phys. Rev. Lett. 68, 3335 (1992).ADSCrossRefGoogle Scholar
  54. 54.
    S. C. Wang and G. Ehrlich, Phys. Rev. Lett. 75, 2964 (1995).ADSCrossRefGoogle Scholar
  55. 55.
    T. A. Witten and L. M. Sander, Phys. Rev. Lett. 47, 1400 (1981).ADSCrossRefGoogle Scholar
  56. 56.
    T. A. Witten and L. M. Sander, Phys. Rev. B 27, 5686 (1983).MathSciNetADSCrossRefGoogle Scholar
  57. 57.
    Z. Zhang, X. Chen, and M. G. Lagally, Phys. Rev. Lett. 73, 1829 (1994).ADSCrossRefGoogle Scholar
  58. 58.
    M. Hohage, M. Bott, M. Morgenstern, Z. Zhang, T. Michely, and G. Comsa, Phys. Rev. Lett. 76, 2366 (1995).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • H. Brune
    • 1
  • K. Bromann
    • 1
  • K. Kern
    • 1
  1. 1.Institut de Physique Expérimentale, EPFLLausanneSwitzerland

Personalised recommendations