The EPR Paradox in Particle Physics

  • Alexander Afriat
  • Franco Selleri

Abstract

A more critical scrutiny of the incompatibility between quantum theory and local realism can come from the study of the EPR paradox in domains where highly efficient particle detectors are used and the additional assumptions are therefore not needed. An appealing possibility is the decay of a J PC = 1-- vector meson into a pair of neutral bosons. The copious production of Φ) meson decays into two neutral kaons in a Φ factory accelerator seems to provide a very useful way of studying the EPR problem (Fig. 4.1). An experiment of this type is characterized by (a) almost perfect angular correlation between the two kaons, (b) nearly 100% efficient high-energy particle detectors, and (c) absence of noise. B factory accelerators also seem to open very interesting new possibilities. These ideas, other proposals, and actually performed experiments on the EPR paradox in nuclear physics are reviewed in this chapter. The discussion will be limited to CP conserving processes, which have a larger probability and seem to allow for easier ways of testing local realism versus quantum mechanics.

Keywords

Particle Physic Proper Time Baryon Number Local Realism Neutral Kaon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Particle Data Group, Phys. Lett. B 239, 1–516 (1990).Google Scholar
  2. 2.
    C. N. Yang, Phys. Rev. 11, 242–245 (1950).ADSCrossRefGoogle Scholar
  3. 3.
    L. R. Kasday, in: Proceedings of the International School of Physics “Enrico Fermi,” Course IL (B. D’Espagnat, ed.), Academic Press, New York (1971), pp. 195–210;Google Scholar
  4. L. R. Kasday, J. D. Ullman, and C. S. Wu, Nuovo Cim. B 25, 633–661 (1975).ADSCrossRefGoogle Scholar
  5. 4.
    G. Faraci, D. Gutkowski, S. Notarrigo, and A. S. Pennisi, Nuovo Cim. Lett. 9, 607–611 (1974).CrossRefGoogle Scholar
  6. 5.
    A. R. Wilson, J. Lowe, and D. K. Butt, J. Phys. G 2, 613–624 (1976).ADSCrossRefGoogle Scholar
  7. 6.
    M. Bruno, M. D’Agostino, and C. Maroni,Nuovo Cim. B 40, 143–152 (1977).ADSCrossRefGoogle Scholar
  8. 7.
    G. Bertolini, E. Diana, and A. Scotti, Nuovo Cim. B 63, 651–665 (1981).ADSCrossRefGoogle Scholar
  9. 8.
    M. Lamehi-Rachtl and W. Mittig, Phys. Rev. D 14, 2543–2555 (1976).ADSCrossRefGoogle Scholar
  10. 9.
    F. Selleri, Nuovo Cim. Lett. 36, 521 (1983).CrossRefGoogle Scholar
  11. 10.
    D. Home and F. Selleri, J. Phys. A 24, L1073-L1078 (1991).ADSCrossRefGoogle Scholar
  12. 11.
    F. Selleri, Phys. Rev. A 56, 3493–3506 (1997).ADSCrossRefGoogle Scholar
  13. 12.
    H. J. Lipkin, Phys. Rev. 176, 1715–1718 (1968).ADSCrossRefGoogle Scholar
  14. 13.
    R. Baldini Celio, M. E. Biagini, S. Bianco, F. Bossi, M. Spinetti, A. Zallo, and S. Dubnicka, in: Proc. Workshop on Physics and Detectors for DaΦne (G. Pancheri, ed.), INFN, Frascati (1991), pp. 179–188.Google Scholar
  15. 14.
    J. Six, Phys. Lett. B 114, 200–202 (1982).ADSCrossRefGoogle Scholar
  16. 15.
    O. Piccioni in: The Physics Handbook DaΦne (L. Maiani et al, eds.), INFN, Frascati (1992), pp. 279–290.Google Scholar
  17. 16.
    A. Datta and D. Home, Phys. Lett. A 119, 3–6 (1986).ADSCrossRefGoogle Scholar
  18. 17.
    A. Muller, private communication; See also: Cplear Collaboration (A. Apostolakis et al), Phys. Lett. B 422, pp. 339–348 (1998).Google Scholar
  19. 18.
    N. A. Törnqvist, Phys. Lett. A 117, 1–4 (1986); in: Quantum Mechanics versus Local Realism. The Einstein-Podolsky-Rosen Paradox (F. Selleri, ed.), Plenum, New York (1988), pp. 115–132.ADSCrossRefGoogle Scholar
  20. 19.
    P. Privitera, Phys. Lett. B 275, 172–180 (1992).ADSCrossRefGoogle Scholar
  21. 20.
    S. A. Abel, M. Dittmar, and H. Dreiner, Phys. Lett. B 280, 304–312 (1992).Google Scholar
  22. 21.
    A. Datta, Proceedings of the Workshop on High Energy Physics Phenomenology, Calcutta (1997).Google Scholar
  23. 22.
    Y. Srivastava and A. Widom, Phys. Lett. B 314, 315–319 (1993).Google Scholar
  24. 23.
    B. Ancochea and A. Bramon, Phys. Lett. B 347, 419–423 (1995).Google Scholar
  25. 24.
    A. Di Domenico, Nucl. Phys. B 450, 293–324 (1995); Testing Quantum Mechanics at DAΦNE, paper presented at the Workshop on K physics, Orsay, France, May 30-June 4, 1996.ADSCrossRefGoogle Scholar
  26. 25.
    P. H. Eberhard, Nucl. Phys. B 398, 155–183 (1993); Tests of Non-local Interferences in Kaon Physics at Asymmetric ([»-factories, LBL-33937 (1993).ADSCrossRefGoogle Scholar
  27. 26.
    D Cocolicchio, Found. Phys. Lett. 3, 359–365 (1990).CrossRefGoogle Scholar
  28. 27.
    G. C. Ghirardi, R. Grassi, and T. Weber, in: The DaΦne Physics Handbook, vol. I (L. Maiani et al., ed.), INFN, Frascati (1992), pp. 261–278.Google Scholar
  29. 28.
    S. Cobianco, Thesis, University of Bologna (1996).Google Scholar
  30. 29.
    A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 47, 460–463 (1981); 49, 91–94 (1982); A. Aspect, P. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804–1807 (1982).ADSCrossRefGoogle Scholar
  31. 30.
    P. Privitera and F. Selleri, Phys. Lett. B 296, 261–272 (1992).Google Scholar
  32. 31.
    P. Privitera, private communication.Google Scholar
  33. 32.
    R. Foadi and F. Selleri, paper in preparation (1998).Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Alexander Afriat
    • 1
  • Franco Selleri
    • 2
  1. 1.London School of EconomicsLondonEngland
  2. 2.University of BariBariItaly

Personalised recommendations