Local Realism versus Quantum Nonlocality

  • Alexander Afriat
  • Franco Selleri


The conceptual foundations of the paradox of Einstein, Podolsky, and Rosen will now be examined in greater detail. The propagation of quantum waves in configuration space gives rise to interference effects that are incompatible with local realism. If the point representing the positions of the particles making up a quantum system does indeed describe a trajectory in configuration space—guided according to the nonlocal formula p = -∇φ—it will be subject to a nonlocal quantum potential. There are many ways, often involving inequalities, of characterizing the nonlocal interference effects deriving from the configuration space description. One can distinguish between weak inequalities, deduced from local realism alone and never violated experimentally, and strong inequalities, which are easier to violate because they depend on further assumptions regarding detection. The more general probabilistic treatment, which rests on a generalization of the deterministic criterion used by Einstein, Podolsky, and Rosen for the identification of elements of reality, will also be dealt with.


Correlation Function State Vector Bell Inequality Photon Pair Local Realism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Bohm and B. J. Hiley, Found. Phys. 5, 93–109 (1975).ADSCrossRefGoogle Scholar
  2. 2.
    B. J. Hiley, Contemp. Phys. 18, 411–414 (1977).ADSCrossRefGoogle Scholar
  3. 3.
    P. A. M. Dirac, in: Directions in Physics (H. Hora et al., eds.), Sydney (1976), p. 10.Google Scholar
  4. 4.
    A. Shimony, in: Fundamental Problems in Quantum Theory. A Conference Held in Honor of Professor John. A. Wheeler (D. M. Greenberger et al., eds.), Annals of the New York Academy of Sciences, New York (1995) pp. 675–679.Google Scholar
  5. 5.
    V. Capasso, D. Fortunato, and F. Selleri, Int. J. Theor. Phys. 7, 319–326 (1973).MathSciNetCrossRefGoogle Scholar
  6. 6.
    L. J. Landau, Phys. Lett. A. 120, 54–56 (1987).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    J. Barretto Bastos Filho and F. Selleri, Found. Phys. 25, 701–716 (1995).MathSciNetADSCrossRefzbMATHGoogle Scholar
  8. 8.
    K. R. Popper, A World of Propensities, Thoemmes, Bristol (1990).Google Scholar
  9. 9.
    J. Von Neumann, Mathematische Grundlagen der Quantenmechanik, Springer, Berlin (1932).zbMATHGoogle Scholar
  10. 10.
    J. F. Clauser and M. A. Horne, Phys. Rev D10, 526–535 (1974).ADSGoogle Scholar
  11. 11.
    E. P. Wigner, Am. J. Phys. 38, 1005–1009 (1970).ADSGoogle Scholar
  12. 12.
    F. Selleri, in: Problems in Quantum Physics: Gdansk ′87 (L. Kostro, et al., eds.), World Scientific, Singapore (1988), pp. 256–268. See also V. L. Lepore and F. Selleri, Found. Phys. Lett. 3, 203–220 (1990).Google Scholar
  13. 13.
    J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880–884 (1969).ADSCrossRefGoogle Scholar
  14. 14.
    A. Aspect, These, Universite de Paris-Sud, Centre d’Orsay (1983).Google Scholar
  15. 15.
    A. Garuccio and V Rapisarda, Nuovo Cimento 65A, 269–297 (1981).MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 49, 91–94 (1982).ADSCrossRefGoogle Scholar
  17. 17.
    S. J. Freedman and J. F. Clauser, Phys. Rev. Lett. 28, 938–941 (1972).ADSCrossRefGoogle Scholar
  18. 18.
    F. Selleri and A. Zeilinger, Found Phys. 18, 1141–1158 (1988);ADSCrossRefGoogle Scholar
  19. M. Ferrero and E. Santos, Phys. Lett. A. 116, 356–360 (1986);ADSCrossRefGoogle Scholar
  20. S. Pascazio, in: Quantum Mechanics versus Local Realism, The Einstein-Podolsky-Rosen Paradox (F. Selleri, ed.) Plenum, New York (1988), pp. 391–411.CrossRefGoogle Scholar
  21. 19.
    F. Selleri, Found. Phys. 8, 103–116 (1978).ADSCrossRefGoogle Scholar
  22. 20.
    S. M. Roy and V. Singh, J. Phys. A 11, 167–171 (1978).ADSCrossRefGoogle Scholar
  23. 21.
    A. Garuccio and F. Selleri, Found. Phys. 10, 209–216 (1980).ADSCrossRefGoogle Scholar
  24. 22.
    A. Garg, Phys. Rev. D. 28, 785–790 (1983).MathSciNetADSCrossRefGoogle Scholar
  25. 23.
    A. Garuccio, in:, Quantum Mechanics versus Local Realism. The Einstein, Podolsky and Rosen Paradox, (F. Seilen, ed.) Plenum, New York (1988) pp. 87–113.CrossRefGoogle Scholar
  26. 24.
    V. L. Lepore, Found. Phys. Lett. 2, 15–26 (1989).MathSciNetCrossRefGoogle Scholar
  27. 25.
    A. Garg and N. D. Mermin, Phys. Rev. Lett. 49, 1220–1223 (1982).MathSciNetADSCrossRefGoogle Scholar
  28. 26.
    D. M. Greenberger, M. Horne, and Z. Zeilinger, in: Bell’s Theorem Quantum Theory and Conceptions of the Universe (M. Kafatos, ed.), Kluwer, Dordrecht (1989), pp. 73–76.Google Scholar
  29. 27.
    N. D. Mermin, Phys. Today, pp. 9–11 (June 1990).Google Scholar
  30. 28.
    A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804–1807 (1982).MathSciNetADSCrossRefGoogle Scholar
  31. 29.
    R. A. Holt and F. M. Pipkin, University of Harvard, unpublished preprint (1974).Google Scholar
  32. 30.
    S. J. Freedman, Ph.D. thesis, University of California, Lawrence Berkeley Laboratory Report No. LBL-391 (1972).Google Scholar
  33. 31.
    E. S. Corchero, Proposed Atomic Cascade Experimental Test of Symmetric Local Hidden-Variables Theories, University of Santander preprint (1986).Google Scholar
  34. 32.
    J. F. Clauser, Phys. Rev. Lett. 37, 1223–1226 (1976).ADSCrossRefGoogle Scholar
  35. 33.
    J. F. Clauser, Nuovo Cimento 33B, 740–746 (1976).CrossRefGoogle Scholar
  36. 34.
    E. S. Fry and R. C. Thompson, Phys. Rev. Lett. 37, 465–468 (1976).ADSCrossRefGoogle Scholar
  37. 35.
    A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 47, 460–463 (1981).ADSCrossRefGoogle Scholar
  38. 36.
    A. Zeilinger, Phys. Lett. 118A, 1–2 (1986).MathSciNetCrossRefGoogle Scholar
  39. 37.
    F. Selleri, Lett. Nuovo Cimento 39, 252–256 (1984).CrossRefGoogle Scholar
  40. 38.
    A. Aspect and P. Grangier, Lett. Nuovo Cimento 43, 345–348 (1985).CrossRefGoogle Scholar
  41. 39.
    W. Perrie, A. J. Duncan, H. J. Beyer, and H. Kleinpoppen, Phys. Rev. Lett. 54, 1790–1793 (1985).ADSCrossRefGoogle Scholar
  42. 40.
    A. Duncan, in: Book of Invited Papers, Tenth International Conference on Atomic Physics (H. Naurumi et al, eds.), Tokyo (1986).Google Scholar
  43. 41.
    L. De Broglie, C.R. Acad. Sci. Paris 278, 721–722 (1974).Google Scholar
  44. 42.
    J. M. Jauch, in: Foundations of Quantum Mechanics (B. d’Espagnat, ed.), Academic Press, New York (1971), pp. 20–55.Google Scholar
  45. 43.
    O. Piccioni and W. Mehlhop, in Microphysical Reality and Quantum Formalism vol. 1 (A. Van Der Merwe, et al., eds.), Kluwer, Dordrecht (1988), pp. 375–389.CrossRefGoogle Scholar
  46. 44.
    Z. Y. Ou and L. Mandel, Phys. Rev. Lett. 61, 50–53 (1988).MathSciNetADSCrossRefGoogle Scholar
  47. 45.
    C. O. Alley and Y. H. Shih, Phys. Rev. Lett 61, 2921–2924 (1988).ADSCrossRefGoogle Scholar
  48. 46.
    T. E. Kjess, Y. H. Shih, A. V Sergienko, and C. O. Alley, Phys. Rev. Lett. 71,3893–3897 (1993).ADSCrossRefGoogle Scholar
  49. 47.
    Z. Y. Ou, C. K. Hong, and L. Mandel, Opt. Commun. 67, 159–163 (1988).ADSCrossRefGoogle Scholar
  50. 48.
    S. M. Tan and D. F. Walls, Opt. Commun. 71, 235–238 (1989).ADSCrossRefGoogle Scholar
  51. 49.
    P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, Phys. Rev. A47, 2472–2475 (1993).ADSCrossRefGoogle Scholar
  52. 50.
    J. D. Franson, Phys. Rev. Lett 62, 2205–2208 (1989).ADSCrossRefGoogle Scholar
  53. 51.
    L. De Caro and A. Garuccio, Phys. Rev. A50, 2803–2805 (1994).CrossRefGoogle Scholar
  54. 52.
    V. Capasso, D. Fortunato, and F. Selleri, Int. J. Theor. Phys. 7, 319–326 (1973).MathSciNetCrossRefGoogle Scholar
  55. 53.
    A. Garuccio, R. Risco Delgado, and F. Selleri, Phys. Rev. A. (1998), submitted.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Alexander Afriat
    • 1
  • Franco Selleri
    • 2
  1. 1.London School of EconomicsLondonEngland
  2. 2.University of BariBariItaly

Personalised recommendations