Skip to main content

Modelling Sleep Propensity and Sleep Disturbances

  • Chapter
Sleep—Wake Disorders

Abstract

Sleep propensity (SP) can be defined as the readiness to transit from wakefulness to sleep, or the ability to stay asleep if already sleeping. The time course of SP within 24 hours shows several distinct features. The predominant temporal distribution of human sleep is characterized by the occurrence of one long sleep episode within each circadian cycle. This pattern is typical for entrained and free-running conditions (Czeisler et al., 1980; Zulley et al., 1981). It has been shown that the strength of the monophasic sleep—wake distribution depends on the strictness of the sleep—wake schedule and that additional, shorter sleep episodes appear with a greater chance if the experimental or social restrictions to fall asleep are low (Campbell, 1984). The most frequently observed deviation from a monophasic sleep—wake distribution is the occurrence of an additional sleep episode in the afternoon, halfway between two episodes of night sleep (Soldatos et al., 1983; Campbell, 1984; Lack and Lushington, 1996). Although napping is the most obvious indicator for systematic fluctuations of vigilance during daytime hours, additional evidence comes from circadian studies with performance tests (Minors and Waterhouse, 1981, chapter 6), and from the analysis of the temporal distribution of traffic accidents during 24 hours (Prokop und Prokop, 1955; Lauber and Kayten, 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achermann, P. and Borbély, A.A., 1994, Simulation of daytime vigilance by the additive interaction of a homeostatic and a circadian process. Biol. Cybern., 71: 115–121.

    Article  PubMed  CAS  Google Scholar 

  • Åkerstedt, T. and Folkard, S., 1990, A model of human sleepiness, in: Sleep’ 90 (J.A. Horne, ed.), pp. 310–313. Pontenagel Press, Bochum.

    Google Scholar 

  • Bes, F.W., Jobert, M., Müller, C., and Schulz, H., 1996, The diurnal distribution of sleep propensity: experimental data about the interaction of the propensities for slow-wave sleep and REM sleep. J. Sleep Res., 5: 90–98.

    Article  PubMed  CAS  Google Scholar 

  • Bonnet, M.H., 1985, Effect of sleep disruption on sleep, performance and mood. Sleep, 8: 11–19.

    PubMed  CAS  Google Scholar 

  • Borbély, A.A., 1982, A two process model of sleep regulation. Human Neurobiol., 1: 195–204.

    Google Scholar 

  • Borbély, A.A. and Achermann, P., 1992, Concepts and models of sleep regulation: An overview. J. Sleep Res., 1: 63–79.

    Article  PubMed  Google Scholar 

  • Borbély, A.A. and Wirz-Justice, A., 1982, Sleep, sleep deprivation and depression: A hypothesis derived from a model of sleep regulation. Hum. Neurobiol., 1: 205–210.

    PubMed  Google Scholar 

  • Broughton, R., 1975, Biorhythmic variations in consciousness and psychological functions. Can. J. Psychol., 16: 217–239.

    Article  Google Scholar 

  • Broughton, R.J., 1985, Three central issues concerning ultradian rhythms, in: Ultradian Rhythms in Physiology and Behavior. (Experimental Brain Research, Supplementum 12, H. Schulz and P. Lavie, eds.), pp. 217–233, Springer Verlag, Berlin, Heidelberg, New York, Tokyo.

    Chapter  Google Scholar 

  • Brunet, D., Nish, D., MacLean, A.W., Coulter, M., and Knowles, J.B., 1988, The time course of ‘process S’: Comparison of visually scored slow wave sleep and power spectral analysis. Electroencephal. Clin. Neurophvsiol., 70:278–280.

    Article  CAS  Google Scholar 

  • Campbell, S.S., 1984, Duration and placement of sleep in a „disentrained“ environment. Psychophysiology, 21: 106–113.

    Article  PubMed  CAS  Google Scholar 

  • Carskadon, M.A. and Dement, W.C., 1975, Sleep studies on a 90 minute day. Electroencephal. Clin. Neurophysiol., 39: 145–155.

    Article  CAS  Google Scholar 

  • Colquhoun, W.P., 1971, Biological Rhythms and Human Performance, Academic Press, London.

    Google Scholar 

  • Czeisler, C., Zimmermann, J., Ronda, J., Moore-Ede, M.C., and Weitzmann, E., 1980, Timing of REM sleep is coupled to the circadian rhythm of body temperature in man. Sleep, 2: 329–346.

    PubMed  CAS  Google Scholar 

  • Daan, S., Beersma, D., and Borbély, A., 1984, Timing of human sleep: Recovery process gated by a circadian pacemaker. Am. J. Physiol., 246: R161–R178.

    PubMed  CAS  Google Scholar 

  • Diagnostic Classification Steering Committee; Thorpy, M.J., Chairman, 1990, International Classification of Sleep Disorders, American Sleep Disorders Association.

    Google Scholar 

  • Dijk, D.J., Beersma, D.G.M., and Daan S., 1987, EEG power density during nap sleep: Reflection of an hourglass measuring the duration of prior wakefulness. J. Biol. Rhythms, 2: 207–219.

    Article  PubMed  CAS  Google Scholar 

  • Dijk, D.J. and Czeisler, C.A., 1994, Paradoxical timing of the circadian rhythm of sleep propensity serves to consolidate sleep and wakefulness in humans. Neurosci. Lett., 166: 63–68.

    Article  PubMed  CAS  Google Scholar 

  • Dijk, D.J. and Czeisler, C.A., 1995, Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J. Neurosci., 15: 3526–3538.

    PubMed  CAS  Google Scholar 

  • Gaillard, J.-M., 1976, Is insomnia a disease of slow-wave sleep? European Neurology, 14: 473–484.

    Article  PubMed  CAS  Google Scholar 

  • Hume, K.I. and Mills, J.N., 1977, Rhythms of REM and Slow-Wave sleep in subjects living on abnormal time schedules. Waking and Sleeping, 1: 291–296.

    Google Scholar 

  • Kobayashi, T., Tsuji, Y, and Endo, S., 1985, Sleep cycles as a basic unit of sleep, in: Ultradian Rhythms in Physiology and Behavior. (Experimental Brain Research, Supplementum 12, H. Schulz and P. Lavie, eds.), pp. 260–269, Springer Verlag, Berlin, Heidelberg, New York, Tokyo.

    Chapter  Google Scholar 

  • Kronauer R.E., Czeisler, C.A., Pilato, S.F., Moore-Ede, M.C., and Weitzmann, E.D., 1982, Mathematical model of the human circadian system with two interacting oscillators. Am. J. Physiol., 242: R3–R17.

    PubMed  CAS  Google Scholar 

  • Lack, L.C. and Lushington, K., 1996, The rhythms of human sleep propensity and core body temperature. J. Sleep Res., 5: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Lauber J.K. and Kayten, P.J., 1988, Sleepiness, circadian dysrhythmia, and fatigue in transportation system accidents. Sleep, 11:503–512.

    PubMed  CAS  Google Scholar 

  • Lavie, P., 1985, Ultradian rhythms: Gates of sleep and wakefulness, pp. 148–164 in: Ultradian Rhythms in Physiology and Behavior (H. Schulz and P. Lavie, eds.) Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • Lavie, P., 1986, Ultrashort sleep-waking schedule. III. Gates and „forbidden zones“ for sleep. Electroencephal. Clin. Neurophysiol., 63: 414–425.

    Article  CAS  Google Scholar 

  • Lavie, P. and Segal, S., 1989, Twenty-four hour structure of sleepiness in morning and evening persons investigated by the ultrashort sleep-wake cycle. Sleep, 12:522–528.

    PubMed  CAS  Google Scholar 

  • Merica, H. and Gaillard, J.-M., 1991, A study of the interrupted REM episode. Physiol. Behav., 50: 1153–1159.

    Article  PubMed  CAS  Google Scholar 

  • Minors, D.S. and Waterhouse, J.M., 1991, Circadian Rhythms and the Human. Wright PSG, Bristol, 1981.

    Google Scholar 

  • Prokop, O. und Prokop, L., 1955, Ermüding und Einschlafen am Steuer. Dtsch. Z. gerichtl. Med., 44: 343–355.

    CAS  Google Scholar 

  • Richardson, G.S., Carskadon, M.A., Orav, E.J., and Dement, W.C., 1982, Circadian variation of sleep tendency in elderly and young adult subjects. Sleep, 5: S82–S94.

    PubMed  Google Scholar 

  • Roth, T., Roehrs, T., Carskadon, M., and Dement, W., 1989, Daytime sleepiness and alertness, pp. 14–23 in: Principles and Practice of Sleep Medicine. (M.H. Kryger, T. Roth, and W.C. Dement, eds.) W.B. Saunders, Philadelphia.

    Google Scholar 

  • Schulz, H., 1987, REM latency after deliberate sleep interruptions. Sleep Res., 16: 223.

    Google Scholar 

  • Schulz, H., 1988, Some properties of the ultradian REM-nonREM sleep cycle and its interaction with circadian rhythms, pp. 171-185 in: Neurobiology of Sleep—Wakefulness Cycle. Metsniereba (T. Oniani, ed.), Tbilisi.

    Google Scholar 

  • Schulz, H., Bes, F.W., and Jobert, M., 1995, Modelling sleep propensity, Sleep Res., 24A: 6.

    Google Scholar 

  • Soldatos, C.R., Madianos, M.G., and Vlachonikolis, I.G., 1983, Early afternoon napping: A fading Greek habit, pp. 202–205 in: Sleep 1982, 6th Eur. Congr. Sleep Res. (W.P. Koella, ed.), Karger, Basel.

    Google Scholar 

  • Stahl, M.L., Orr, W.C., and Bollinger, C., 1983, Postprandial sleepiness: Objective documentation via polysomnography. Sleep, 6: 29–35.

    PubMed  CAS  Google Scholar 

  • Strogatz, S.H., 1986, The Mathematical Structure of the Human Sleep-Wake Cycle. Lecture notes in mathematics, No. 69. Springer Verlag, Berlin.

    Book  Google Scholar 

  • Webb, W.B., 1988, An objective behavioral model of sleep. Sleep, 11: 488–496.

    PubMed  CAS  Google Scholar 

  • Webb, W.B., 1994, Prediction of sleep onset, pp. 53–72 in: Sleep Onset. Normal and Abnormal Processes (R.D. Ogilvie and J.R. Harsh, eds.). American Psychological Association, Washington, DC.

    Chapter  Google Scholar 

  • Webb, W.B. and Agnew, H., 1975, Sleep efficiency for sleep-wake cycles of varied length. Psychophysiology, 12: 637–641.

    Article  PubMed  CAS  Google Scholar 

  • Weitzman, E.D., Nogeire, C., Perlow, M, Fukushima, D., Sassin, J., McGregor, P., Gallagher, T., and Hellman, L., 1974, Effects of a prolonged 3-hour sleep—wakefulness cycle on sleep stages, plasma cortisol, growth hormone and body temperature in man. J. Clin. Endocrin. Metab., 38: 1018–1030.

    Article  CAS  Google Scholar 

  • Wever, R.A., 1984, Toward a mathematical model of circadian rhythmicity, pp. 17–79 in: Mathematical Models of the Circadian Sleep-Wake Cycle. (M.C. Moore-Ede and C.A. Czeisler, eds.) Raven Press, New York.

    Google Scholar 

  • Zulley, J., Wever, A., and Aschoff, J., 1981, The dependence of onset and duration of sleep on the circadian rhythm of rectal temperature. Pflügers Arch. 391: 314–318.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schulz, H., Bes, E., Jobert, M. (1997). Modelling Sleep Propensity and Sleep Disturbances. In: Meier-Ewert, K., Okawa, M. (eds) Sleep—Wake Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0245-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0245-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0247-4

  • Online ISBN: 978-1-4899-0245-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics