Advertisement

Masses Beyond the Standard Model

  • G. G. Ross
Part of the NATO ASI Series book series (NSSB, volume 363)

Abstract

If we are to understand the pattern of fermion masses and mixing angles it is necessary to go beyond the Standard Model. One obvious possibility is that there is further structure, Grand Unification, strings etc., at a high scale which determines the Yukawa couplings responsible for the masses. However attempts to implement such ideas have to explain why the electroweak breaking scale is much less than the unification scale. Low energy supersymmetry provides a way of protecting such an hierarchy of mass scales and if supersymmetry is broken by a gaugino condensate it can even explain the origin of the hierarchy.

Keywords

Mass Matrix Yukawa Coupling Minimal Supersymmetric Standard Model Gauge Coupling Supersymmetry Breaking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Buras, J. Ellis, M.K. Gaillard and D.V. Nanopoulos, Nucl. Phys. B135 66 (1978);ADSCrossRefGoogle Scholar
  2. D.V. Nanopoulos and D.A. Ross, Nucl. Phys. B157 273 (1970);ADSCrossRefGoogle Scholar
  3. H. Arason, D.J. Castano, B.E. Keszthelyi, S. Mikaelian, E.J. Piard, P. Ramond and B.D. Wright, Phys. Rev. Lett. 67 2933 (1991);ADSCrossRefGoogle Scholar
  4. L. Ibanez and C. Lopez, Nucl. Phys. B233 511 (1984);ADSCrossRefGoogle Scholar
  5. S. Dimopoulos, L. Hall and S. Raby, Phys. Rev. Lett. 68 1984 (1992);ADSCrossRefGoogle Scholar
  6. S. Dimopoulos, L. Hall and S. Raby, Phys. Rev. D45 4192 (1992).ADSCrossRefGoogle Scholar
  7. [2]
    G.G. Ross, Phys. Lett. B364 216 (1995);Google Scholar
  8. M. Lanzagorta and G.G. Ross, Phys Lett. B364 163 (1995);Google Scholar
  9. M. Lanzagorta and G.G. Ross, ibid B349 319 (1995).ADSGoogle Scholar
  10. [3]
    A related approach is discussed in “Gauge-Yukawa Unification in SO(10) SUSY GUTS”, J. Kubo, M. Mondragon, S.Shoda, George Zoupanos, contributed paper PA05–108; Warsaw International conference on High Energy Physics, 1996; ibid “Unification of Gauge and Yukawa Couplings without Symmery”, J. Kubo, M. Mondragon, M. Olech, George. Zoupanos, contributed paper PA05–109.Google Scholar
  11. [4]
    For a recent review and further references see A. Ali, D.London, DESY Preprint DESY-96–140, hep-ph/9607392;Google Scholar
  12. H. Leutwyler, Bern Preprint HEPPH-9609467, hep-ph/9609467 and Phys. Lett. 378 1996(313).Google Scholar
  13. [5]
    B.J. Bjorken, lectures presented at Oxford 1996, available on Oxford WWW home page.Google Scholar
  14. [6]
    M.E. Machacek and M.T. Vaughn, Phys. Lett. B103 427 (1981);Google Scholar
  15. C. Wetterich, Nucl. Phys. 261 461 (1985);ADSCrossRefGoogle Scholar
  16. C. Wetterich, Nucl. Phys. B279 711 (1987);ADSCrossRefGoogle Scholar
  17. J. Bijnens and C. Wetterich, Phys. Lett. 176 431 (1986);Google Scholar
  18. J. Bijnens and C. Wetterich, Nucl. Phys. 283 237 (1987);ADSCrossRefGoogle Scholar
  19. J. Bijnens and C. Wetterich, Phys. Lett. B199 525 (1987);Google Scholar
  20. P. Kaus and S. Meshkov, Mod. Phys. Lett. 3 1251 (1988);ADSCrossRefGoogle Scholar
  21. C. D.Froggat and H.B. Nielsen, Origin of symmetries, World Scientific (1991);Google Scholar
  22. S. Dimopoulos, L. J. Hall and S. Raby, Phys. Rev. Lett. 68 1984 (1992);Google Scholar
  23. S. Dimopoulos, L. J. Hall and S. Raby, Phys. Rev. D45 4195 (1992);Google Scholar
  24. H. Arason, D. J. Castaiio, P. Ramond and E. J. Piard, Phys.Rev. D47 232 (1993);Google Scholar
  25. G. F. Giudice, Mod. Phys. Lett. A7 2429 (1992).Google Scholar
  26. K.S. Babu and R.N. Mohapatra, Univ. of Maryland preprint, UMD-PP-95–57;Google Scholar
  27. M. Bando, K.-I. Izawa and T. Takahashi, Kyoto Univ. preprint, KUNS 1252.Google Scholar
  28. [7]
    P. Ramond, R.G. Roberts and G.G. Ross, Nucl.Phys. B406 19 (1993).Google Scholar
  29. [8]
    L. Ibanez, G.G. Ross, Phys.Lett. B332: 100–110, 1994.Google Scholar
  30. [9]
    P. Binetruy and P. Ramond, Phys. Lett. B350 49 (1995);Google Scholar
  31. V. Jain and R. Schrock, Phys. Lett. B352(1995);Google Scholar
  32. E. Dudas, S. Pokorski and C.A. Savoy, Phys. Lett. B356 45 (1995);Google Scholar
  33. Y. Nir, Phys. Lett. B345 107 (1995).Google Scholar
  34. [10]
    E. Papageorgiu, Orsay preprint, LPTHE Orsay 40/94;Google Scholar
  35. H. Dreiner, G. K. Leontaris, S. Lola, G. G. Ross and C. Scheich, CERN-TH.7311/94 preprint, (to appear in Nucl. Phys. B).Google Scholar
  36. [11]
    L. Ibanez, Phys. Lett. B 303 55 (1993).Google Scholar
  37. [12]
    For a review of string theories, see M. Green, J. Schwarz and E. Witten, Superstring Theory, Cambridge University Press, 1987.Google Scholar
  38. [13]
    J.L. Lopez and D.V. Nanopoulos, Phys. Lett. B268 359 (1991);Google Scholar
  39. A.E. Faraggi, Phys. Lett. B278 131 (1992);Google Scholar
  40. A.E. Faraggi, Princeton preprint, IASSN-HEP-94/31;Google Scholar
  41. A.E. Faraggi and E. Halyo, Nucl. Phys. B416 63 (1994).Google Scholar
  42. [14]
    For a review and extensive references see S.Raby, Ohio State Preprint OHSTPYHEP-T-95–001.Google Scholar
  43. [15]
    B. Pendleton, G. G. Ross, Phys. Lett. 98B, 291 (1981).Google Scholar
  44. [16]
    C. T. Hill, Phys. Rev. D24, 691, (1981);ADSGoogle Scholar
  45. C. T. Hill, C. N. Leung, S. Rao, Nucl. Phys. B262, 517 (1985);Google Scholar
  46. J. Kubo, K. Sibold, W. Zimmermann, Phys. Lett. B222, 191 (1989);Google Scholar
  47. J. Kubo, K. Sibold, W. Zimmermann, Nucl. Phys. B259, 331 (1985).Google Scholar
  48. [17]
    L. Ibanez, C. Lopez, Nucl. Phys. B233, 545 (1984).CrossRefGoogle Scholar
  49. [18]
    J. Gasser and H. Leutwyler, Phys. Rep. 87C 77 (1982);Google Scholar
  50. S. Narison, Phys. Lett B216 191 (1989);Google Scholar
  51. N. Gray, D.J. Broadhurst, W. Grafe and K. Schilcher, Z.Phys. C48 673 (1990).Google Scholar
  52. [19]
    L. Alvarez-Gaume, J. Polchinski and M.B. Wise, Nucl. Phys. B221 495 (1983);ADSCrossRefGoogle Scholar
  53. J. Bagger, S. Dimopoulos and E. Masso, Phys. Lett. 156B 357 (1985).Google Scholar
  54. [20]
    H. Georgi, H.R. Quinn, S. Weinberg,Phys.Rev.Lett. 33 451 (1974).Google Scholar
  55. [21]
    For general reviews of GUTs and the original references see: P. Langacker, Physics Reports 72 (1981) 185;CrossRefGoogle Scholar
  56. G. G. Ross, Grand Unified Theories, Benjamin/Cummings (1984);Google Scholar
  57. R.N. Mohapatra, Unification and Supersymmetry, Springer-Verlag,(1992).Google Scholar
  58. [22]
    H. Georgi and S.L. Glashow, Phys. Rev. Lett. 32 438 (1974).ADSCrossRefGoogle Scholar
  59. H. Georgi and S.L. Glashow, Nucl.Phys. B193 150 (1981).ADSCrossRefGoogle Scholar
  60. [23]
    J. Ellis, K. Enqvist, D.V. Nanopoulos and F. Zwirner, Mod. Phys. Lett. Al 57 (1987);Google Scholar
  61. R. Barbieri and G.F. Giudice, Nucl. Phys. B306 63 (1988);ADSCrossRefGoogle Scholar
  62. S. Dimopoulos and G.F. Giudice, Phys. Lett. B357 573 (1995).Google Scholar
  63. [24]
    G. Anderson and D.J. Castano, Phys. Lett. B347 300 (1995)Google Scholar
  64. G. Anderson and D.J. Castano, Phys. Rev. D52 1693 (1995)ADSGoogle Scholar
  65. [25]
    For reviews, see: P. Fayet, Unification of the Fundamental Particle Interactions, eds. S. Ferrara, J. Ellis and P. Van Nieuwenhuizen ( Plenum Press, New York, 1980 ), p. 587;Google Scholar
  66. H.P. Nilles, Phys. Rev. 110C 1 (1984);Google Scholar
  67. G.G. Ross, Grand Unified Theories, Benjamin (New York 1984 );Google Scholar
  68. H.E. Haber and G.L. Kane, Physics Reports 117C 75 (1985).ADSCrossRefGoogle Scholar
  69. [26]
    L.J. Hall and M. Suzuki, Nucl. Phys. B231 419 (1984);ADSCrossRefGoogle Scholar
  70. F. Zwirner, Phys. Lett. B132 103 (1983).Google Scholar
  71. [27]
    F. Gabbiani and A. Masiero, Nucl. Phys. B322 235 (1989);ADSCrossRefGoogle Scholar
  72. J. Hagelin, S. Kelley and T. Tanaka, Nucl. Phys. B 415 293 (1994);ADSCrossRefGoogle Scholar
  73. J. Hagelin, S. Kelley and T. Tanaka, Mod. Phys.Lett. A 8 2737 (1993);ADSCrossRefGoogle Scholar
  74. D. Choudhury, F. Eberlein, A. Konig, J. Louis and S. Pokorski, Phys. Lett. B342, 80 (1995);Google Scholar
  75. F. Gabbiani, E. Gabrielli, A. Masierio and L. Schwestrini, Rome preprint ROM2F/96/21; hep-ph/9604387.Google Scholar
  76. [28]
    K. Inoue, A. Kakuto, H. Komatsu and S. Takeshta, Progr.Theor. Phys. 68(1982)927, and 71 (1984) 348:Google Scholar
  77. [29]
    L.E. Ibanez and D. Lust, Nucl. Phys. B382 305 (1992);MathSciNetADSCrossRefGoogle Scholar
  78. V.S. Kaplunovsky and J. Louis, Phys. Lett. B306 269 (1993);Google Scholar
  79. A. Bringnole, L.E. Ibanez and C. Munoz, Nucl. Phys. B422 125 (1994)ADSCrossRefGoogle Scholar
  80. A. Bringnole, L.E. Ibanez and C. Munoz, Erratum: B436 747 (1995);Google Scholar
  81. S. Ferrara, C. Kounnas and F. Zwirner, Nucl. Phys. B429 589 (1994)MathSciNetADSzbMATHCrossRefGoogle Scholar
  82. S. Ferrara, C. Kounnas and F. Zwirner, Erratum: B433 255 (1995);MathSciNetzbMATHGoogle Scholar
  83. T. Kobayashi, D. Suematsu, K. Yamada and Y. Yamagishi, Phys. Lett. B348 402 (1995);Google Scholar
  84. P. Brax and M. Chemtob, Phys. Rev. D51 6550 (1995);ADSGoogle Scholar
  85. E. Dudas, S. Pokorski and C.A. Savoy, Phys. Lett. B369 255 (1996).Google Scholar
  86. [30]
    M. Dine, A.E. Nelson and Y. Shirman, Phys. Rev. D 51 1362 (1995);ADSCrossRefGoogle Scholar
  87. M. Dine, A.E. Nelson, Y. Nir and Y. Shirman, SCIPP-95–32, hep-ph/9507378.Google Scholar
  88. [31]
    S. Dimopoulos, Phys. Rev. Lett. 76, 3494 (1996).CrossRefGoogle Scholar
  89. [32]
    Supersymmetric Analysis and Predictions Based on the CDF ee 7y+ missing ET Event“, S. Ambrosanio, G.L. Kane, contributed paper PA10–008;Google Scholar
  90. S. Ambrosinis, Phys Rev Lett 76 3498 (1996).Google Scholar
  91. [33]
    A Search for Supersymmetry with a Light Gravitino at the Fermilab Tevatron and CERN LEP Collider“, S. Ambrosanio, G.L. Kane, contributed paper PA11–008.Google Scholar
  92. [34]
    For a review of string theories, see M. Green, J. Schwarz and E. Witten, Superstring Theory, Cambridge University Press, 1987.Google Scholar
  93. [35]
    For a review and extensive references see S. Pokorski, plenary talk, IHEP conference, Warsaw, 1996.. See also “Implication of the Reported Deviations from the Standard Model for Gamma (Z—+ bb) and as(mz2)”, J.D.Wells, G.L.Kane, contributed paper PA11–006, IHEP conference, Warsaw, 1996.Google Scholar
  94. [36]
    H. Georgi, H.R. Quinn and S. Weinberg, Phys. Rev. Lett. 33 451 (1974)ADSCrossRefGoogle Scholar
  95. [37]
    S. Dimopoulos, S. Raby, F. Wilczek, P hys.Rev. 24 1681 (1981);ADSGoogle Scholar
  96. L. E. Ibanez, G. G. Ross, Phys. Lett. 105 439 (1982);Google Scholar
  97. M. Einhorn, D. R.T. Jones, Nucl. Phys. 196 475 (1982).ADSCrossRefGoogle Scholar
  98. [38]
    J. Ellis, S. Kelley, D.V. Nanopoulos, Phys. Lett. 260 131 (1991);Google Scholar
  99. U. Amaldi, W.deBoer, H.Furstenau, Phys. Lett. 260B 447 (1991);CrossRefGoogle Scholar
  100. P. Langacker, M. Luo, Phys.Rev. 44 817 (1991);ADSCrossRefGoogle Scholar
  101. G.G. Ross and R.G. Roberts, Nucl. Phys. B377 571 (1992);ADSCrossRefGoogle Scholar
  102. F. Anselmo, L. Ciafarelli, A. Peter man and A. Zichichi, Nuovo Cim. 104A 1817 (1991).ADSCrossRefGoogle Scholar
  103. [39]
    L.E. Ibanez and G.G. Ross, Phys Lett,;Google Scholar
  104. K. Inoue, A. Kakuto, H. Komatsu and S. Takeshita, Progr. theor. Phys. 67 1889 (1982);ADSCrossRefGoogle Scholar
  105. L. Alvarez-Gaume, J Polchinski and M.B. Wise, Nucl. Phys. B221 495 (1993).ADSCrossRefGoogle Scholar
  106. [40]
    For the latest fits and extensive references to earlier work see W. de Boer, G. Burkart, R. Ehret, J. Lautenbacher, W. Oberschulte-Beckmann, U. Schwickerath, V.Bednyakov, D.I.Kazakov and S.G.Kovalenko, Univ. of Karlsruhe preprint IEKPKA/95–07.Google Scholar
  107. [41]
    For a recent review and extensive references see M. Carena, Proceedings International conference on High Energy Physics, World Scientific (1995) 481.Google Scholar
  108. [42]
    S. Weinberg, Phys. Lett. 91B 51 (1980);Google Scholar
  109. L.J. Hall, Nuc. Phys. B178 75 (1981);ADSCrossRefGoogle Scholar
  110. C.H. Llewellyn-Smith, G.G.Ross, J. Wheater, Nucl. Phys. B177 263 (1981);ADSCrossRefGoogle Scholar
  111. R. Barberi and L. Hall, Phys. Rev. Lett. 68 752 (1992).ADSCrossRefGoogle Scholar
  112. [43]
    V. Kaplunovsky, Nucl. Phys. B 307 (1988) 145; for a recent review see K.DienesGoogle Scholar
  113. [44]
    L. Roszkowski and M. Shifman, Phys.Rev. D53 404 (1996)ADSGoogle Scholar
  114. [45]
    Non-Universalities and Planck Scale Effects on Grand Unification“, Pran Nath, R. Arnowitt, contributed paper PA11–014.Google Scholar
  115. [46]
    V. Kaplunovsky, Nucl. Phys. B 307 (1998) 145; 382 (1992) E436;Google Scholar
  116. L.J. Dixon, V.S. Kaplunovsky and J.Louis, Nucl. Phys. B 329 (1990) 27; 355 (1991) 649;MathSciNetGoogle Scholar
  117. J.P. Derendinger, S. Ferrara, C. Kounnas and F. Zwirner, Nucl. Phys. B372 145 (1992);MathSciNetADSCrossRefGoogle Scholar
  118. J.P. Derendinger, S. Ferrara, C. Kounnas and F. Zwirner, Phys. Lett. B271 307 (1991);MathSciNetGoogle Scholar
  119. G. Lopez Cardoso and B.A. Ovrut, Nucl. Phys. B 369 351 (1992);ADSCrossRefGoogle Scholar
  120. I. Antoniadis, K.S. Narain and T.R. Taylor, Phys. Lett. B 267 37 (1991);MathSciNetADSCrossRefGoogle Scholar
  121. I. Antoniadis, E. Gava and K.S. Narain, Phys. Lett. B 283 (1992) 209; 393 (1992) 93;MathSciNetGoogle Scholar
  122. I. Antoniadis, E.Gava, K.S. Narain and T.R. Taylor, preprint NUB-3057 (1992);Google Scholar
  123. L.E. Ibanez, D. Lust and G.G. Ross, Phys. Lett. B 272 251 (1991);ADSCrossRefGoogle Scholar
  124. L. Ibanez and D. Lust, Nucl. Phys. B 382 305 (1992);MathSciNetADSCrossRefGoogle Scholar
  125. I. Antoniadis, J. Ellis, R. Lacaze and D.V. Nanopoulos, Phys. Lett. B 268 188 (1991);ADSCrossRefGoogle Scholar
  126. G. Cardoso, D. Lust and T. Mohaupt, HUB-IEP-95/50, hep-th/9412209.Google Scholar
  127. [47]
    E. Witten, Nucl Phys. B433, 85 (1995);MathSciNetADSCrossRefGoogle Scholar
  128. P. Horava and E. Witten, Nucl. Phys. B460, 506 (1996);MathSciNetADSzbMATHCrossRefGoogle Scholar
  129. E. Caceras, V. Kaplunovsky, I. Michael Mandelberg, UTTG-0796, hep-th/9606036.Google Scholar
  130. [48]
    V. Lucas and S. Raby, Ohio State Preprint OHSTPY-HEP-T-95–028Google Scholar
  131. [49]
    Realistic SUSY GUT for CP violation, neutrino oscillation, fermion masses and mixings“, Yue-Liang Wu, K.C.Chou, contributed paper PA08–002.Google Scholar
  132. [50]
    SUSY GUT’s and global fits to low energy data“, Tomas Blazek, Marcela Carena, Stuart Raby, contributed paper PA11–029.Google Scholar
  133. [51]
    H. Georgi and C. Jarlskog, Phys.Lett. B86 297 (1979);Google Scholar
  134. H. Georgi and D.V. Nanopoulos, Nucl.Phys. 159 16 (1979);ADSCrossRefGoogle Scholar
  135. J. Harvey, P. Ramond and D.B. Reiss, Phys.Lett. 92 309 (1980);Google Scholar
  136. J. Harvey, P. Ramond and D.B. Reiss, Nucl.Phys. 199 (1982) 223.ADSCrossRefGoogle Scholar
  137. [52]
    P.M. Ferreira, I. Jack and D.R. T. Jones Phys. Lett. B357 359 (1995)MathSciNetCrossRefGoogle Scholar
  138. [53]
    M. Dine and N. Seiberg, Phys. Lett. 162 B, 299 (1985);Google Scholar
  139. T. Banks and M. Dine, Phys. Rev. D50 7454 (1994);MathSciNetADSGoogle Scholar
  140. M. Dine and Y. Shirman, hep-th/9601175; M.Dine,hepth/9508085Google Scholar
  141. [54]
    M. Lanzagorta and G. G. Ross, CERN-TH.95–162Google Scholar
  142. [55]
    G.G.Ross, in preparation.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • G. G. Ross
    • 1
  1. 1.Department of Physics, Theoretical PhysicsUniversity of OxfordOxfordUK

Personalised recommendations