Skip to main content

Double Beta Decay Research — Present and Future

  • Chapter
Masses of Fundamental Particles

Part of the book series: NATO ASI Series ((NSSB,volume 363))

  • 141 Accesses

Abstract

During the last fifteen years remarkable results have been obtained in double beta decay investigation, level of which looked like unattainable during the whole history of this research beginning from the theoretical prediction of 2β decay by M. Goeppert-Mayer 1 in 1935 and the first experimental work by E. Fireman 2 in 1948: half-life limit of greater than 1024 y for neutrinoless (0ν) 2β decay of 76Ge 3–6; large scale experiments on 76Ge with enriched HP Ge detectors 5,6; half-life limits of greater than 1023 y for 0ν2β decay of 136Xe 7 and 1022 y for 82Se 8, 100Mo 9, 116Cd 10 and 130Te 11; observation of the two neutrino (2ν) 2β decay of 76Ge 4–6, 82Se 8, 100Mo 12–14, 116Cd 15–17 and 150Nd 13, 18 in direct counting experiments; progress in the theoretical interpretation of double beta decay 19–21.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Goeppert-Mayer, Phys. Rev. 48, 512 (1935).

    Article  ADS  MATH  Google Scholar 

  2. E.L. Fireman. Phys. Rev. 74, 1238 (1948).

    Google Scholar 

  3. D.O. Caldwell et al., Nucl. Phys. B (Proc. Suppl.) 13, 547 (1990).

    Article  ADS  Google Scholar 

  4. I.V. Kirpichnikov, Nucl. Phys. B (Proc. Suppl.) 28A, 210 (1992).

    Article  ADS  Google Scholar 

  5. H.V. Klapdor-Kleingrothaus (Heidelberg-Moscow Collabor.), Nucl. Phys. B (Proc. Suppl.) 31, 72 (1993).

    Google Scholar 

  6. F.T. Avignone et al. (IGEX Collabor.), Nucl. Phys. B (Proc. Suppl.) 35, 354 (1994).

    Google Scholar 

  7. J.-C. Vuilleumieret al., Phys. Rev. D 48, 1009 (1993).

    Article  ADS  Google Scholar 

  8. S.R. Elliot et al., Phys. Rev. C 46, 1535 (1992).

    Article  ADS  Google Scholar 

  9. M. Alston-Garnjost et al., Phys. Rev. Lett. 71, 831 (1993).

    Article  ADS  Google Scholar 

  10. F.A. Danevich et al., Proc. 3-rd Int. Symp. on Weak and Electromagn. Inter. in Nuclei WEIN-92 (Dubna, June 1992 ), ed. Ts. Vylov ( World Sci. Publ. Co., 1993 ) p. 575.

    Google Scholar 

  11. A. Alessandrello et al., Phys. Lett. B 335, 519 (1994).

    Article  ADS  Google Scholar 

  12. H. Ejiri et al., Nucl. Phys. B (Proc. Suppl.) 28A, 219 (1992).

    Article  ADS  Google Scholar 

  13. S.R. Elliot et al., Nucl. Phys. B (Proc. Suppl.) 31, 68 (1993).

    Google Scholar 

  14. D. Dassie et al. (NEMO Collaboration), Phys. Rew. D 51, 2090 (1995).

    Google Scholar 

  15. F.A. Danevich et al., Phys. Lett. B 344, 72 (1995).

    Article  ADS  Google Scholar 

  16. H. Ejiri et al., Journal of the Phys. Society of Japan 64, 339 (1995).

    Article  ADS  Google Scholar 

  17. R. Arnold et al., JETP Lett. 61, 170 (1995).

    ADS  Google Scholar 

  18. V.A. Artemiev et al., JETP Lett. 58, 262 (1993).

    ADS  Google Scholar 

  19. T. Tomoda, Rep. Prog. Phys. 54, 53 (1991).

    Article  ADS  Google Scholar 

  20. H.V. Klapdor-Kleingrothaus, Proc. 3-rd Int. Symp. on Weak and Electromagn. Inter.in Nuclei WEIN-92, Dubna, June 1992, ed. Vylov (World Sci. Publ. Co., 1993) p.201.

    Google Scholar 

  21. M. Moe and P. Vogel, Ann. Rev. Nucl. Part. Sci. 44, 247 (1994).

    Article  ADS  Google Scholar 

  22. G.B. Gelmini and M. Roncadelli, Phys. Lett. B 99, 411 (1981).

    Article  ADS  Google Scholar 

  23. Y. Chikashige, R.N. Mohapatra, R.D. Peccei, Phys. Lett. B 98, 265 (1981).

    Article  ADS  Google Scholar 

  24. C. Aulakh and R.N. Mohapatra, Phys. Lett. B 119, 136 (1982).

    Article  ADS  Google Scholar 

  25. R.N. Mohapatra and P.B. Pal, Massive Neutrinos in Phys. and Astrophys. (World Sci. Publ. Co., 1991 ).

    Google Scholar 

  26. J. Steinberger, Phys. Rep. 203, 345 (1991).

    Article  ADS  Google Scholar 

  27. J. Helmig et al., Proc.Int. Workshop on Double Beta Decay and Related Topics, Trento, Italy, April 24 - May 5, 1995 (World Sci. Publ. Co., 1996 ) p. 130.

    Google Scholar 

  28. M. Hirsch et al., Phys. Rev. D. 53, 1329 (1996).

    Article  ADS  Google Scholar 

  29. Athanassopoulos et al., Phys.Rev. Lett. 75, 2650 (1995).

    Google Scholar 

  30. D.G. Lee and R.N. Mohapatra, Phys. Lett. B 329, 463 (1994).

    Article  ADS  Google Scholar 

  31. Ya.B. Zeldovich, S.Yu. Lukyanov and Ya.A. Smorodinski, Soy. Phys.Usp. 54, 361 (1954).

    Google Scholar 

  32. G.F. Dell’Antonio and E. Fiorini, Suppl. Nuovo Cim. 17, 132 (1960).

    Article  Google Scholar 

  33. V.R. Lazarenko, Soy. Phys. Usp. 9, 860 (1967).

    Article  ADS  Google Scholar 

  34. E. Fiorini, Riv. Nuovo Cim. 2, 1 (1972).

    Article  MathSciNet  ADS  Google Scholar 

  35. D. Bryman and C. Picciotto, Rev. Mod. Phys. 50, 11 (1978).

    Article  ADS  Google Scholar 

  36. Yu.G. Zdesenko, Soy. J. Part. Nucl. 11, 542 (1980).

    Google Scholar 

  37. H. Primakoff and S.P. Rosen, Ann. Rev. Nucl. Part. Sci. 31, 145 (1981).

    Article  ADS  Google Scholar 

  38. W.C. Haxton and G.J. Stephenson Jr., Prog. Part. Nucl. Phys. 12, 409 (1984).

    Article  ADS  Google Scholar 

  39. M.G. Schepkin, Soy. Phys. Usp. 27, 555 (1984).

    Article  ADS  Google Scholar 

  40. M. Doi, T. Kotani, and E. Takasugi, Prog. Theor. Phys. Suppl. 83, 1 (1985).

    Article  ADS  Google Scholar 

  41. J.D. Vergados, Phys. Rep. 133, 1 (1986).

    Article  ADS  Google Scholar 

  42. F.T. Avignone III and R.L. Brodzinski, Prog. Part. Nucl. Phys. 21, 99 (1988).

    Article  ADS  Google Scholar 

  43. A. Faessler, Prog. Part. Nucl. Phys. 21, 183 (1988).

    Article  ADS  Google Scholar 

  44. K. Muto and H.V. Klapdor, in Neutrinos, ed. by H.V.Klapdor ( Springer-Verlag, Berlin/Heidelberg/New York, 1988 ), p. 183.

    Google Scholar 

  45. D.O. Caldwell, Int. J. Mod. Phys. A 4, 1851 (1989).

    Article  ADS  Google Scholar 

  46. M.K. Moe, Nucl. Phys. B (Proc. Suppl.) 19, 158 (1991).

    Article  ADS  Google Scholar 

  47. F. Boehm and P. Vogel, Physics of Massive Neutrinos 2-nd ed., ( Cambridge University Press, Cambridge, 1992 ).

    Book  Google Scholar 

  48. M.K. Moe, Int. J. Mod. Phys. E 2, 507 (1993).

    Article  ADS  Google Scholar 

  49. V.I. Tretyak and Yu.G. Zdesenko, At. Data and Nucl. Data Tables 61, 43 (1995).

    Article  ADS  Google Scholar 

  50. H.V. Klapdor-Kleingrothaus, Proc.Int. Workshop on Double Beta Decay and Related Topics, Trento, Italy, April 24 - May 5, 1995 (World Sci. Publ. Co., 1996 ) p. 3.

    Google Scholar 

  51. R.N. Mohapatra, Proc.Int. Workshop on Double Beta Decay and Related Topics, Trento, Italy, April 24 - May 5, 1995 (World Sci. Publ. Co., 1996 ) p. 44.

    Google Scholar 

  52. J.W.F. Walle, Proc.Int. Workshop on Double Beta Decay and Related Topics, Trento, Italy, April 24 - May 5, 1995 (World Sci. Publ. Co., 1996 ) p. 69.

    Google Scholar 

  53. W.C. Haxton, G.J. Stephenson Jr., and D. Strottman, Phys. Rev. Lett. 47, 153 (1981).

    Article  ADS  Google Scholar 

  54. W.C. Haxton, S.P. Rosen, and G.J. Stephenson Jr., Phys. Rev. D 26, 1805 (1982).

    Article  ADS  Google Scholar 

  55. T. Tsuboi, K. Muto, and H. Horie, Phys. Lett. B 143, 293 (1984).

    Article  ADS  Google Scholar 

  56. W.C. Haxton, Nucl. Phys. B (Proc..Suppl.) 31, 88 (1993).

    Article  ADS  Google Scholar 

  57. P. Vogel and M.R. Zirnbauer, Phys. Rev. Lett. 57, 3148 (1986).

    Article  ADS  Google Scholar 

  58. K. Grotz and H.V. Klapdor, Nucl. Phys. A 460, 395 (1986).

    Article  ADS  Google Scholar 

  59. O. Civitarese, A. Faessler, and T. Tomoda, Phys. Lett. B 194, 11 (1987).

    Article  ADS  Google Scholar 

  60. T. Tomoda and A. Faessler, Phys. Lett. B 199, 475 (1987).

    Article  ADS  Google Scholar 

  61. J. Engel, P. Vogel, and M.R. Zirnbauer, Phys. Rev. C 37, 731 (1988).

    Article  ADS  Google Scholar 

  62. K. Muto, E. Bender, and H.V. Klapdor, Z. Phys. A 334, 177; 187 (1989).

    ADS  Google Scholar 

  63. G. Pantis et al., J. Phys. G: Nucl. Part. Phys. 18, 605 (1992).

    Article  ADS  Google Scholar 

  64. A. Staudt, K. Muto, and H.V. Klapdor-Kleingrothaus, Europhys. Lett. 13, 31 (1990).

    Article  ADS  Google Scholar 

  65. J. Suhonen and O. Civitarese, Phys. Lett. B 308, 212 (1993).

    Article  ADS  Google Scholar 

  66. G. Pantis and J.D. Vergados, Phys. Rep. 242, 285 (1994).

    Article  ADS  Google Scholar 

  67. D.B. Stout and T.T.S. Kuo, Phys. Rev. Lett. 69, 1900 (1992).

    Article  ADS  Google Scholar 

  68. S. Stoica and W.A. Kaminski, Phys. Rev. C 47, 867 (1993).

    Article  ADS  Google Scholar 

  69. C.R. Ching and T.H. Ho, Comm. Theor. Phys. 10, 45 (1988).

    Google Scholar 

  70. C.R. Ching, T.H. Ho, and X. Wu, Phys. Rev. C 40, 304 (1989).

    Article  ADS  Google Scholar 

  71. M. Gmitro and F. Simkovic, Izv. AN SSSR, ser. fiz. 54, 1780 (1990).

    Google Scholar 

  72. X.R. Wu et al., Phys. Lett. B 272, 169 (1991).

    Article  ADS  Google Scholar 

  73. X.R. Wu et al., Phys. Lett. B 276, 274 (1992).

    Article  ADS  Google Scholar 

  74. M. Hirsch et al., Phys. Rep. 242, 403 (1994).

    Article  ADS  Google Scholar 

  75. J. Engel, W.C. Haxton, and P. Vogel, Phys. Rev. C 46, 2153 (1992).

    Article  ADS  Google Scholar 

  76. O. Castanos et al., Nucl. Phys A 571, 276 (1994).

    Article  ADS  Google Scholar 

  77. J.H. Hirsch et al., Nucl. Phys A 582, 124 (1995).

    Article  ADS  Google Scholar 

  78. J.D. Vergados, Nucl. Phys B 250, 618 (1985).

    Article  ADS  Google Scholar 

  79. M. Lusignoli and M.G. Schepkin, Nucl. Phys B 261, 143 (1985).

    Article  ADS  Google Scholar 

  80. J. Suhonen, S.B. Khadkikar and A. Faessler, Phys. Lett. B 237, 8 (1990).

    Article  ADS  Google Scholar 

  81. J. Suhonen, S.B. Khadkikar and A. Faessler, Nucl. Phys. A 529, 727 (1991); Nucl. Phys. A 529, 727 (1991).

    Google Scholar 

  82. K. Grotz and H.V. Klapdor, The Weak Interaction in Nuclear, Particle and Astrophysics ( Adam Hilger, Bristol/Philadelphia/New York, 1990 ).

    Google Scholar 

  83. K. Muto, E. Bender, and H.V. Klapdor-Kleingrothaus, Z. Phys. A 339, 435 (1991).

    Article  ADS  Google Scholar 

  84. W.C. Haxton, Nucl. Phys. B (Proc. Suppl.) 31, 88 (1993).

    Article  ADS  Google Scholar 

  85. H.V. Klapdor-Kleingrothaus, Nucl. Phys. B (Proc. Suppl.) 48, 216 (1996).

    Article  ADS  Google Scholar 

  86. A. Balysh et al., Phys. Lett. B 322, 176 (1994).

    Article  ADS  Google Scholar 

  87. C.E. Aalseth et al., Nucl. Phys. B (Proc. Suppl.) 48, 223 (1996).

    Article  ADS  Google Scholar 

  88. Yu.G. Zdesenko et al., Proc.Int.Conf. Neutrino-82,Balatonfured, Hungary, 1982, ed. by A. Frenkel and L. Jenik (Budapest, 1982 ), p. 209.

    Google Scholar 

  89. S.I. Vasilyev et al., JETP Lett. 51, 622 (1990).

    ADS  Google Scholar 

  90. Yu. Zdesenko, J. Phys. G: Nucl. Part. Phys. 17, s243 (1991).

    Article  ADS  Google Scholar 

  91. F.A. Danevich et al., JETP Lett. 49, 476 (1989).

    ADS  Google Scholar 

  92. F.A. Danevich et al., Nucl. Phys. B (Proc. Suppl.) 48, 232 (1996).

    Article  ADS  Google Scholar 

  93. A. Alessandrello et al., Nucl. Phys. B (Proc. Suppl.) 35, 366 (1994).

    Article  ADS  Google Scholar 

  94. A. Alessandrelloet al., Nucl. Phys. B (Proc. Suppl.) 48, 238 (1996).

    Article  ADS  Google Scholar 

  95. J. Busto et al., Nucl. Phys. B (Proc. Suppl.) 48, 251 (1996).

    Article  ADS  Google Scholar 

  96. T.A. Girard et al., Nucl. Instrum. Meth. A 316, 44 (1992).

    Article  ADS  Google Scholar 

  97. A.G. Prokopets, S. Sasaki, and M. Miyajima, KEK Proc. 94–7, 60 (Tsukuba, 1994 ).

    Google Scholar 

  98. M.K. Moe, Phys. Rev. C 44, 931 (1991).

    Article  ADS  Google Scholar 

  99. M. Miyajima, S. Sasaki, and H. Tawara, Proc. 6-th Workshop on Rad. Detectors and Their Uses. Tsukuba, Japan, Jan. 29–30, 1991 (Tsukuba, 1991), p. 19.

    Google Scholar 

  100. A.A. Klimenko et al., Nucl. Instrum. Meth. B 17, 445 (1986).

    Article  ADS  Google Scholar 

  101. M.K. Moe, M.A. Nelson, and M.A. Vient, Prog. Part. Nucl. Phys. 32, 247 (1994).

    Article  ADS  Google Scholar 

  102. V.A. Artemiev et al., Nucl. Phys. B (Proc. Suppl.) 48, 241 (1996).

    Article  ADS  Google Scholar 

  103. F.A. Danevich et al., Nucl. Phys. B (Proc. Suppl.) 48 235 (19%).

    Google Scholar 

  104. A. Morales, Proc. of TAUP’89, Aquilla, September 25–28, 1989, ed. A. Bottino and P. Monacelli ( Editions Frontieres, Gif-sur-Yvette, 1989 ) p. 97.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zdesenko, Y.G. (1997). Double Beta Decay Research — Present and Future. In: Lévy, M., Iliopoulos, J., Gastmans, R., Gérard, JM. (eds) Masses of Fundamental Particles. NATO ASI Series, vol 363. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0242-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0242-9_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0244-3

  • Online ISBN: 978-1-4899-0242-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics