Skip to main content

Semibatch Crystallizer

  • Chapter

Part of the book series: The Springer Chemical Engineering Series ((PCES))

Abstract

Semibatch crystallizers are widely used in the chemical industry for the manufacture of many chemicals in a variety of operating modes. Similar to batch crystallizers, they are generally useful in small-scale operations as they are simple, flexible, require less investment, and generally involve less process development. As well as being an important mode of operation, semibatch operation may result from the dynamic conditions that arise either involuntarily imposed, as in start-up or shut-down periods for continuous crystallizers, or voluntarily imposed, to achieve the desired crystallizer behavior. In addition to their flexibility and ease of operation, semibatch operations reduce the severity of the heat effects, prevent the formation of undesired by-products, and/or improve the quality and yield of the desired product in a process sequence. These are some of the advantages that may be exploited from a variety of semibatch operations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Khayat, A., Reaction Crystallization of Salicylic Acid, M Sc thesis, Victoria University of Manchester, Manchester (1988).

    Google Scholar 

  • Aslund, A. and Rasmuson, A. C, Reaction Crystallization of Benzoic Acid, Report submitted to the Royal Institute of Technology, Stockholm (1986).

    Google Scholar 

  • Aslund, B., and Rasmuson, A. C, “Crystal size distribution control in semibatch reaction crystallization,” in Mersmann, A. (Ed.), Industrial Crystallization’90, Garmisch-Partenkirchen, Germany, 17–22(1990).

    Google Scholar 

  • Aslund, A. and Rasmuson, A. C, “Semibatch reaction crystallization of benzoic acid,” AIChE J. 38, 328–342(1992).

    Article  Google Scholar 

  • Balasubramanian, D. J., Srinivas, V., Gaikar, V. G. and Sharma, M. M., “Aggregation behaviour of hydrotrope compounds in aqueous solution,”J. Phys. Chem. 93, 3865–3871 (1989).

    Article  CAS  Google Scholar 

  • Baldyga, J., Pohorecki, R., Podgorska, W. and Marcant, B., “Micromixing effects in semibatch precipitation,” in Mersmann, A. (Ed.), Industrial Crystallization’90, Garmisch-Partenkirchen, Germany, 175–180(1990).

    Google Scholar 

  • Bhatia, S. K. and Chakraborty, D., “Modified MWR approach: Application to agglomerative precipitation,” AIChE J. 38, 868–878 (1992).

    Article  CAS  Google Scholar 

  • Brakalov, L. B., “On the mechanism of magnesium hydroxide ripening,” Chem. Eng. Sci. 40, 305–312(1985).

    Article  CAS  Google Scholar 

  • Chen, W., Fisher, R. R. and Berg, J. R., “Simulation of particle size distribution in an aggregation — breakup process,” Chem. Eng. Sci. 45, 3003–3006 (1990).

    Article  CAS  Google Scholar 

  • David, R., Marchai, P., Villermaux, J. and Klein, J. P., “Crystallization and precipitation engineering-III. A discrete formulation of the agglomeration rate of crystals in a crystallization process,” Chem. Eng. Sci. 46, 205–213 (1991a).

    Article  CAS  Google Scholar 

  • David, R., Villermaux, J., Marchai, P. and Klein, J. P., “Crystallization and precipitation engineering-IV. Kinetic model of adipic acid crystallization,” Chem. Eng. Sci. 46,1129–1136 (1991b).

    Article  CAS  Google Scholar 

  • Dirksen, J. A. and Ring, T. A., “Fundamentals of crystallization kinetic effects on particle size distributions and morphology,” Chem. Eng. Sci. 46, 2389–2477 (1991).

    Article  CAS  Google Scholar 

  • Delpech de Saint Guilhem, X., and Ring, T. A., “Exact solution for the population in a continuous stirred tank crystallizer with agglomeration,” Chem. Eng. Sci. 42, 1247–1249 (1987).

    Article  Google Scholar 

  • Drake, R. L., “A General mathematical survey of the coagulation equation,” in Hidy, G. M. and Brock, J. R.(Eds.), Topics in Current Aerosol Research, Part 2, Pergamon Press, New York (1972).

    Google Scholar 

  • Dunning, W. J., “Ripening and aging processes in precipitates,” in Smith, L.(Ed.), Particle Growth in Suspensions, SCI Monograph, 38, 3-28 (1973).

    Google Scholar 

  • Franck, R., David, R., Villermaux, J. and Klein, J. P., “Crystallization and precipitation engineering — II. A chemical reaction engineering approach to salicylic acid precipitation: Modelling of batch kinetics and application to continuous operation,” Chem. Eng. Sci. 43, 69–77 (1988).

    Article  CAS  Google Scholar 

  • Guggenheim, E. A., Thermodynamique, Dunod, Paris (1965).

    Google Scholar 

  • Hanitzsch, E. and Kahlweit, M., “Aging of precipitates,” in Industrial Crystallization, Institute of Chemical Engineers, London, 130–141 (1969).

    Google Scholar 

  • Hartel, R. W., Gottung, B. E., Randolph, A. D. and Drach, G. W., “Mechanisms and kinetic modeling of calcium oxalate crystal aggregation in a urinelike liquor. Part I: Mechanisms,” AIChE J. 32, 1176–1185(1986).

    Article  CAS  Google Scholar 

  • Hartel, R. W., and Randolph, A. D., “Mechanisms and kinetic modeling of calcium oxalate crystal aggregation in a urinelike liquor. Part II: Kinetic modeling,” AIChE J. 32, 1186–1195 (1986).

    Article  CAS  Google Scholar 

  • Higashitani, K., Yamauchi, K., Matsumo, Y. and Hosokawa, G., ‘Turbulent coagulation of particles dispersed in a viscous fluid,” J-Chem. Eng. Jpn. 16, 299–304 (1983).

    Article  CAS  Google Scholar 

  • Hostomsky, J. and Jones, A. G., “Calcium carbonate crystallization, agglomeration and form during continuous precipitation from solution,” J. Phys., D: Appli. Phys. 24, 165–170 (1991).

    Article  CAS  Google Scholar 

  • Hounslow, M. J., Ryall, R. L. and Marshall, V. R., “A discretized population balance for nucleation, growth and aggregation,” AIChE J. 34, 1821–1832 (1988).

    Article  CAS  Google Scholar 

  • Hounslow, M. J., “A discretized population balance for continuous systems at steady state,” AIChE J. 36, 106–116 (1990a).

    Article  CAS  Google Scholar 

  • Hounslow, M. J., “Nucleation, growth and aggregation rates from steady state experimental data,” AIChEJ. 36,1748–1751 (1990b).

    Article  CAS  Google Scholar 

  • Hulburt, H. M. and Katz, S. “Some problems in particle technology: A statistical mechanical formulation,” Chem. Eng. Sci. 19, 555–574 (1964).

    Article  CAS  Google Scholar 

  • Her, R. K., The Chemistry of Silica, Wiley, New York (1979).

    Google Scholar 

  • Kahlweit, M., “Ostwald ripening of precipitates,” Adv. Colloid. Interface Sci. 5, 1–35 (1975).

    Article  CAS  Google Scholar 

  • Kuboi, R., Harada, M., Winterbottom, J. M., Anderson, A. J. S. and Nienow, A. W, “Mixing effects in double-jet and single-jet precipitation,” in World Congress III of Chemical Engineering, Tokyo, Vol. 2, 8g-302,1040–1043 (1986).

    Google Scholar 

  • Landolt-Bornstein, Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysisik and Technik, 6 sufl, Band II, Teill 7, Flektnsche Eignhaften II, Springer, Berlin (1960).

    Google Scholar 

  • Lamey, M.D. and Ring, T. A., “The effects of agglomeration in a continuous stirred tank crystallizer,” Chem. Eng. Sci. 41, 1213–1219 (1986).

    Article  CAS  Google Scholar 

  • Levenspiel, O., Chemical Reaction Engineering, 2nd ed., Wiley, New York (1972).

    Google Scholar 

  • Liao, P. F. and Hulburt, H. M., “Agglomeration processes in suspension crystallization,” Annual Meeting of American Institute of Chemical Engineers, Chicago, December (1976).

    Google Scholar 

  • Lui, R. Y. M. and Thompson, R. W., “Analysis of a continuous crystallizer with agglomeration,” Chem. Eng. Sci. 47, 1897–1901 (1992).

    Article  CAS  Google Scholar 

  • Marcant, B. and David, R., “Experimental evidence for and prediction of micromixing effects in precipitation,” AIChE J. 37, 1698–1710(1991).

    Article  CAS  Google Scholar 

  • Marchai, P., David, R., Klein, J. P. and Villermaux, J., “Crystallization and precipitation engineering—I. An efficient method for solving population balance in crystallization with agglomeration,” Chem. Eng Sci. 43, 59–67 (1988).

    Article  Google Scholar 

  • Masy, J. C, and Cournil, M., “Using a turbidimetric method to study the kinetics of agglomeration of potassium sulphate in a liquid medium,” Chem. Eng. Sci. 46, 693–701 (1991).

    Article  CAS  Google Scholar 

  • Matz, G., “Crystallization processes,” in Jancic, S. J. and de Jong, E. J. (Eds.), Industrial Crystallization 84, Elsevier, Amsterdam, 103–110 (1984).

    Google Scholar 

  • Matz, G., “Ostwald ripening — a modern concept,” Ger. Chem. Eng. 8, 255–265 (1985).

    Google Scholar 

  • McKee, R. H., “Use of hydrotrope solutions in industry,” Ind. Eng. Chem. 38, 382–384 (1946).

    Article  CAS  Google Scholar 

  • Mukhopadhyay, S. C. and Epstein, M. A. F., “Computer model for crystal size distribution control in a semibatch evaporative crystallizer,” Ind. Eng. Chem. Process Des. Dev. 19, 352–358 (1980).

    Article  CAS  Google Scholar 

  • Nore, P.-H. and Mersmann, A., “Batch precipitation of barium carbonate,” Chem. Eng. Sci. 48, 3083–3088 (1993).

    Article  CAS  Google Scholar 

  • Przybycien, T. M. and Bailey, J. E., “Aggregation kinetics in salt induced protein precipitation,” AIChEJ. 35, 1779–1790 (1989).

    Article  CAS  Google Scholar 

  • Robinson, R. A. and Stokes, R. H., Electrolytic Solutions, Butterworth, London (1955).

    Google Scholar 

  • Saleh, A. M., Badwan, A. A., El-Khordagui, L. K. and Khalil, S. A., “The solubility of benzodiazepines in sodium salicylate solution and proposed mechanism for hydrotropic solubilization,” Int. J. Pharma. 13, 67–74 (1983a).

    Google Scholar 

  • Saleh, A. M., Badwan, A. A. and El-Khordagui, L. K., “A study of hydrotropic salts, cyclohexanol and water systems,” Int. J. Pharma. 17, 115–119 (1983b).

    Article  CAS  Google Scholar 

  • Sohnel, O., Mullin, J. W. and Jones, A. G., “Crystallization and agglomeration kinetics in the batch precipitation of strontium molybdate,” Ind. Eng. Chem. Res. 28, 1725–1730 (1988).

    Google Scholar 

  • Sugimoto, T., “General kinetics of Ostwald ripening of precipitates,” J. Colloid Interface Sci. 63, 16–26(1978).

    Article  CAS  Google Scholar 

  • Tavare, N. S., “Mixing in continuous crystallizers,” AIChE J. 32, 705–732 (1986).

    Article  CAS  Google Scholar 

  • Tavare, N. S., “Simulation of Ostwald ripening in a reactive batch crystallizer,” AIChE J. 33,152–156 (1987).

    Article  CAS  Google Scholar 

  • Tavare, N. S. and Gaikar, V. G., “Precipitation of salicylic acid: hydrotropy and reaction,” Ind. Eng. Chem. Res. 30, 722–728 (1991).

    Article  CAS  Google Scholar 

  • Tavare, N. S. and Garside, J., “Simultaneous estimation of crystal nucleation and growth kinetics from batch experiments,” Chem. Eng. Res. Des. 64, 109–118 (1986).

    CAS  Google Scholar 

  • Tavare, N. S. and Garside, J., “Reactive precipitation in a semibatch crystallizer,” in Kulkarni, B. D., Mashelkar, R. A. and Sharma, M. M.(Eds.), Recent Trends in Chemical Reaction Engineering, Vol. 2, Wiley Eastern, New Delhi, 272–281 (1987).

    Google Scholar 

  • Tavare, N. S. and Garside, J. “Simulation of reactive precipitation in a semibatch crystallizer,” Trans. I. Chem. E. 68A, 115–122 (1990).

    Google Scholar 

  • Tavare, N. S. and Garside, J., “Silica precipitation in a semibatch crystallizer,” Chem. Eng. Sci. 48, 475–488(1993).

    Article  CAS  Google Scholar 

  • Tavare, N. S. and Patwardhan, A. V., “Agglomeration in a continuous MSMPR crystallizer,” AIChE J. 38, 377–384 (1992).

    Article  CAS  Google Scholar 

  • Tavare, N. S., Shah, M. B. and Garside, J., “Crystallization and agglomeration kinetics of nickel ammonium sulphate in an MSMPR crystallizer,” Powder Technology 44, 13–18 (1985).

    Article  CAS  Google Scholar 

  • Tosun, G., “An experimental study of the effect of mixing on the particle size distribution in BaSCO4 precipitation reaction,” in Euro. Conf. on Mixing, Pravia, BHRA, 161–170 (1988).

    Google Scholar 

  • Tovstiga, G. and Wirges, H.-P., “The effect of mixing intensity on precipitation in a stirred tank reactor,” in Mersmann, A. (Ed.), Industrial Crystallization’ 90, Garmisch-Partenkirchen, Germany, 169–174(1990).

    Google Scholar 

  • Wachi, S. and Jones, A. G., “Dynamic modelling of particle size distribution and degree of agglomeration during precipitation,” Chem. Eng. Sci. 47, 3145–3148 (1992).

    Article  CAS  Google Scholar 

  • Wey, J. S. and Strong, R. W., “Influence of the Gibbs-Thomson effect on the growth behaviour of AgBr crystals,” Photogr. Sci. Eng. 21, 248–252 (1977).

    CAS  Google Scholar 

  • Zumstein, R. C, and Rousseau, R. W., “Agglomeration of copper sulphate pentahydrate crystals within well-mixed crystallizers,” Chem. Eng. Sci. 44, 2149–2155 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tavare, N.S. (1995). Semibatch Crystallizer. In: Industrial Crystallization. The Springer Chemical Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0233-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0233-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0235-1

  • Online ISBN: 978-1-4899-0233-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics