Skip to main content

Characterization of Crystallization Kinetics from Batch Experiments

  • Chapter
Industrial Crystallization

Part of the book series: The Springer Chemical Engineering Series ((PCES))

Abstract

The process analysis of various types of batch crystallizers operated in various modes is presented in Chapter 5. In this chapter, the techniques that are available to characterize crystallization kinetics of a crystallizing system in a batch crystallizer are discussed. In recent years there has been an increasing recognition of the importance of crystallization kinetics in assessing the design and performance of crystallizers. The characterization of crystallization kinetics in an environment typical of that encountered in industrial situations is therefore of utmost importance. Numerous techniques have been devised to measure and analyze crystal growth and, to a far lesser extent, nucleation. The experimental techniques developed to extract crystallization parameters as depicted in Figure 53 are based on phenomenological models and are closely related to those used in chemical reaction engineering. The classical approach to establish crystallization kinetics involves the isolation of the nucleation and growth processes and the determination of their kinetics separately by direct and/or indirect methods under different hydrodynamic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bellman, R. and Kalaba, R., Quasilinearization and Non-linear Boundary Value Problems, American Elsevier, New York (1965).

    Google Scholar 

  • Bergmann, R. N., Kalaba, R. E. and Spingarn, K., “Optimizing inputs for diagnosis of diabetes: I Fitting a minimal model to data,” J. Optimization Theory Applic. 20, 47–63 (1976).

    Article  Google Scholar 

  • Bransom, S. H., Dunning, W. J. and Millard, B., “Kinetics of crystallization in solution,” Discuss. Farad. Soc. 5, 83–103 (1949).

    Article  Google Scholar 

  • Bourne, J. R. and Faubel, A., “Influence of agitation on the nucleation of ammonium sulfate,” in Jancic, S. J. and de Jong, E. J. (Eds.), Industrial Crystallization 81, North-Holland, Amsterdam,79–86(1982).

    Google Scholar 

  • Chambliss, C. W., Nucleation and Growth Kinetics in a Cooling Crystallizer, Ph. D. thesis, Iowa State University, Ames, Iowa (1966).

    Google Scholar 

  • Dauday, P. J. and de Jong, E. J., “The dynamic behaviour of NaCl crystallization in a 91 L MSMPR crystallizer,” in Jancic, S. J. and de Jong, E. J.(Eds.), Industrial Crystallization 84, Elsevier, Amsterdam, 447–451 (1984).

    Google Scholar 

  • Donnelly, J. K. and Quon, D., “Identification of parameters in systems of ordinary differential equations using quasilinearization and data perturbation,” Can. J. Chem. Eng. 48, 114–119 (1970).

    Article  Google Scholar 

  • Estrin, J., McNeil, T. J. and Weed, D. R., “A note on modeling laboratory batch crystallizations,” AIChEJ. 24, 728–731 (1978).

    Article  Google Scholar 

  • Garside, J. and Jancic, S. J., “Growth and dissolution of potash alum crystals in the subsieve size range,” AIChEJ. 22, 887–894 (1976).

    Article  CAS  Google Scholar 

  • Garside, J. and Jancic, S. J., “Measurement and scaleup of secondary nucleation kinetics for the potash alum-water system,” AIChE J. 25, 948–958 (1979).

    Article  CAS  Google Scholar 

  • Garside, J. and Shah, M. B., “Crystallization kinetics from MSMPR crystallizers,” Ind. Eng. Chem. Proc. Des. Dev. 19, 509–514 (1980).

    Article  CAS  Google Scholar 

  • Garside, J, Gibilaro, L. G. and Tavare, N. S., “Evaluation of crystal growth kinetics from a desupersaturation curve using initial derivatives,” Chem. Eng. Sci. 37, 1625–1628 (1982).

    Article  Google Scholar 

  • Garside, J. and Tavare, N. S., Research reports submitted to Separation Process Services (SPS), Harwell, Didcot, England (1982).

    Google Scholar 

  • Garside, J. and Tavare, N. S., Research report submitted to Separation Process Services (SPS), Harwell, Didcot, England (1983).

    Google Scholar 

  • Garside, J. and Tavare, N. S., “Simultaneous estimation of crystal nucleation and growth kinetics from batch experiments,” Chem. Eng. Res. Des. 64, 109–118 (1986).

    Google Scholar 

  • Gutwald, T. and Mersmann, A., “Determination of crystallization kinetics from batch experiments,” in Mersmann, A.(Ed.), Industrial Crystallization’ 90, Garmisch-Partenkirchen, Germany, 331–336(1990).

    Google Scholar 

  • Halfon, A. and Kaliguine, S., “Alumina trihydrate crystallization: Part I Secondary nucleation and growth rate kinetics,” Can. J. Chem. Eng. 54, 160–167 (1976).

    Article  CAS  Google Scholar 

  • Han, C. D., “Determination of crystal growth rate by analog computer simulation,” Chem. Eng. Sci. 22, 611–618 (1967).

    Article  CAS  Google Scholar 

  • Harano, Y. and Yamamoto, H., “Formation and growth of nuclei by secondary nucleation in agitated solution of K-alum,” J. Chem. Eng. Jpn. 13, 313–318 (1980).

    Article  Google Scholar 

  • Harano, Y. and Yamamoto, H., “Impurity effect of some amino acids on formation and growth of Lglutamic acid nuclei by secondary nucleation in agitated solution,” in Jancic, S. J. and de Jong, E. J.(Eds.), Industrial Crystallization 81, North Holland, Amsterdam, 137–145 (1982).

    Google Scholar 

  • Hiquily, N. and Laguerie, C, “On the interpretation of the metastable zone width in relation to crystallization kinetics,” in Proc. Technol. Proceedings, 6 (Industrial Crystallization’87), 107–110(1989).

    Google Scholar 

  • Hulburt, H. M. and Katz, S., “Some problems in particle technology,” Chem. Eng. Sci. 19, 555–574 (1964).

    Article  CAS  Google Scholar 

  • Hwang, M. and Seinfeld, J. H., “A new algorithm for the estimation of parameters in ordinary differential equations,” AIChEJ. 18, 90–93 (1972).

    Article  CAS  Google Scholar 

  • Jancic, S. J., Crystallization Kinetics and Crystal Size Distribution in Mixed Suspension Mixed Product Removal Crystallizers, Ph.D. thesis, University College, London (1976).

    Google Scholar 

  • Janse, A. H., Nucleation and Crystal Growth in Batch Crystallizers, Ph.D. thesis, Delft University of Technology, Delft, Holland (1977).

    Google Scholar 

  • Janse, A. H. and de Jong, E. J., “On the width of the metastable zone,” Trans. I. Chem. E. 56, 187–193 (1978).

    CAS  Google Scholar 

  • Jones, A. G., Budz, J., and Mullin, J. W., “Crystallization kinetics of potassium sulfate in an MSMPR agitated vessel,” AIChE J. 32 2002–2009 (1986).

    Article  CAS  Google Scholar 

  • Kane, S. G., Evans, T. W., Brian, P. L. T. and Sarofim, A. F., “Determination of the kinetics of secondary nucleation in batch crystallizers,” AIChE J. 20, 855–862 (1974).

    Article  CAS  Google Scholar 

  • Kalogerakis, N. and Luss, R., “Simplification of quasilinearization method for parameter estimation,” AIChEJ. 29, 858–866 (1983).

    Article  CAS  Google Scholar 

  • Klug, D. L. and Pigford, R. L., “The probability distribution of growth rates of anhydrous sodium sulphate crystals,” Ind. Eng. Chem. Res. 28, 1718–1725 (1989).

    Article  CAS  Google Scholar 

  • Kyprianidou-Leodidou, T. C. and Botsaris, G. D., “Freeze concentration of aqueous solutions,” in Myerson, A. S. and Toyokura, K. (Eds.), Crystallization as a Separation Process, ACS Symp. Ser. No. 438, American Chemical Society, Washington, D.C., 364–372 (1990).

    Chapter  Google Scholar 

  • Larson, M. A. and Mullin, J. W., “Crystallization kinetics of ammonium sulfate,” J. Crystal Growth 20, 183–191 (1973).

    Article  CAS  Google Scholar 

  • Lee, E. S., Quasilinearization and Invariant Imbedding, Academic Press, New York (1968).

    Google Scholar 

  • Lee, H. H., “Determination of birth and growth rate of secondary nuclei: SSBR crystallizer,” AIChE J. 24, 535–537 (1978).

    Article  CAS  Google Scholar 

  • Lyapunov, A. N. and Kholmogateseva, E. P., “Determination of the growth rate of hydrarllite particles in an aluminate solution by linear growth of crystal faces,” J. Appl. Chem. USSR, 30, 1379–1384,1664-1668(1957).

    Google Scholar 

  • Marquardt, D. W., “An algorithm for least squares estimation of non-linear parameters,” J. Soc. Ind. Appl. Math. 11, 431–441 (1963).

    Article  Google Scholar 

  • Misra, C. and White, E. T., “Kinetics of crystallization of aluminium trihydroxide from seeded aluminate solution,” Chem. Eng. Symp. Ser. 110 67, 53–65 (1971).

    CAS  Google Scholar 

  • Mohamed, A. K. M., Tavare, N. S. and Garside, J., “Crystallization kinetics of potassium sulphate in a 1 m3 batch cooling crystallizer,” in Strathdee, G. L., Klein, M. O. and Melis, L. A. (Eds.), Crystallization and Precipitation, Pergamon Press, Oxford, 61–70 (1987).

    Google Scholar 

  • Molner, I., Halaz, S. and Blickle, T., “Determination of size-dependent crystal growth characteristics from batch experiments,” Chem. Eng. Sci. 45, 1243–1251 (1990).

    Article  Google Scholar 

  • Mullin, J. W. and Garside, J., “Crystallization of aluminium potassium sulphate: A study of assessment of crystallizer design data: I: Single crystal growth rates, II: Growth in a fluidized bed,” Trans. I. Chem. E. 45, 285–290,291-295 (1967)

    Google Scholar 

  • Mullin, J. W. and Garside, J., “Crystallization of aluminium potassium sulphate: A study of assessment of crystallizer design data: III: Growth and dissolution rates,” Trans. I. Chem. E. 46, 11–18 (1968).

    Google Scholar 

  • Mullin, J. W., Garside, J. and Gaska, C., “A laboratory scale fluidized bed crystallizer,” Chem. Ind. 41, 1704–1706 (1966).

    Google Scholar 

  • Mullin, J. W. and Nyvlt, J., “Design of continuous mixed suspension crystallizers,” Kristall und Technik 9, 144–155(1974).

    Google Scholar 

  • Nag Fortran Library, Mark 7, Numerical Algorithm Group Ltd., Oxford, England (1978).

    Google Scholar 

  • Nieman, R. E. and Fisher, D. G., “Parameter estimation using linear programming and quasilinearization,” Can. J. Chem. Eng. 50, 802–806 (1972).

    Article  CAS  Google Scholar 

  • Nyvlt, J., “Kinetics of crystallization from solution,” J. Crystal Growth 3/4, 377–383 (1968).

    Article  Google Scholar 

  • Nvylt, J., Industrial Crystallization: The State of the Art, Verlag Chemie, Weinheim (1978).

    Google Scholar 

  • Omran, A. M. and King, C. J., “Kinetics of ice crystallization in sugar solutions and fruit juices,” AIChE J. 20, 795–803 (1974).

    Article  CAS  Google Scholar 

  • Palwe, B. G., Chivate, M. R. and Tavare, N. S., “Growth kinetics of ammonium nitrate crystals in a draft tube baffled batch crystallizer,” Ind. Eng. Chem. Proc. Des. Dev. 24, 914–919 (1985).

    Article  CAS  Google Scholar 

  • Powell, M. J. D., “A method for minimizing a sum of squares of non-linear functions without calculating derivatives,” Computer J. 8, 303–307 (1965).

    Article  Google Scholar 

  • Prakash, R., Prakash, O. and Tavare, N. S., “Orthorhombic structure: a necessity in superconducting 1-2-3 compounds,” Pramana-J. Phys. 30, L597–L600 (1988).

    Article  CAS  Google Scholar 

  • Qiu, Y. and Rasmuson, A. C., “Nucleation and growth of succinic acid in a batch cooling crystallizer,” AIChE J. 36, 665–676 (1990a).

    Article  CAS  Google Scholar 

  • Qiu, Y. and Rasmuson, A. C, “Crystal growth rate parameters from isothermal desupersaturation experiments,” Chem. Eng. Sci. 46, 1659–1667 (1990b).

    Google Scholar 

  • Randolph, A. D. and Larson, M. A., Theory of Particulate Processes, Academic Press, New York (1971).

    Google Scholar 

  • Randolph, A. D. and Rajagopal, K., “Direct measurement of crystal nucleation and growth rate kinetics in a backmixed crystal slurry: Study of the K2SO4 system.,” Ind. Eng. Chem. Fundam. 9, 165–171 (1970).

    Article  CAS  Google Scholar 

  • Randolph, A. D. and Cise, M. D., “Nucleation kinetics of the potassium sulphate-water system,” AIChE J. 18, 798–807 (1972).

    Article  CAS  Google Scholar 

  • Randolph, A. D. and Sikdar, S. K., “Effect of a soft impeller coating on the net formation of secondary nuclei,” AIChE J. 20, 410–412 (1974).

    Article  CAS  Google Scholar 

  • Randolph, A. D. and Sikdar, S. K., “Creation and survival of secondary crystal nuclei: the potassium sulfate-water system,” Ind. Eng. Chem. Fundam. 15, 64–71 (1976).

    Article  CAS  Google Scholar 

  • Rawlings, J. R., Miller, S. M. and Witkowski, W. R., “Model identification and control of solution crystallization processes: A review,” Ind. Eng. Chem. Res. 32, 1275–1296 (1993).

    Article  CAS  Google Scholar 

  • Rosen, H. N. and Hulburt, H. M., “Continuous vacuum crystallization of potassium sulfate,” Chem. Eng. Prog. SympSer. No. 110 67, 18–26 (1971).

    CAS  Google Scholar 

  • Rumford, F. and Bain, J., “The controlled crystallization of sodium chloride,” Trans. Inst. Chem. Eng. 38, 10–20 (1960).

    Google Scholar 

  • Seinfeld, J. H., “Identification of parameters in partial differential equations,” Chem. Eng. Sci. 24, 65–74(1969).

    Article  CAS  Google Scholar 

  • Seinfeld, J. H. and Chan, W. H., “Estimation of parameters in partial differential equations,” Chem. Eng. Sci. 26, 753–766 (1971).

    Article  CAS  Google Scholar 

  • Seinfeld, J. H. and Gavalas, G. R., “Analysis of kinetic parameters from batch and integral experiments,” AIChE J. 16, 644–647 (1970).

    Article  CAS  Google Scholar 

  • Seinfeld, J. H. and Lapidus, L., Mathematical Methods in Chemical Engineering, Prentice Hall, Englewood Cliffs, New Jersey (1974).

    Google Scholar 

  • Shi, Y, Liang, B. and Hartel, R. W., “Crystallization of ice from aqueous solutions in suspension,” in Myerson, A. S. and Toyokura, K. (Eds.), Crystallization as a Separation Process, ACS Symp. Sen No. 438, American Chemical Society, Washington, D.C., 316–328 (1990).

    Chapter  Google Scholar 

  • Shirai, Y, Nakanishi, K., Matsuno, R. and Kamikubo, T., “On the kinetics of ice crystallization in batch crystallizers,”AIChE J. 31, 676–682 (1985).

    Article  CAS  Google Scholar 

  • Sowul, L. and Epstein, M. A. F., “Crystallization kinetics of sucrose in a CMSMPR evaporative crystallizer,” Ind. Eng. Chem. Proc. Des. Dev. 20, 197–203 (1981).

    Article  CAS  Google Scholar 

  • Stocking, J. H. and King, C. J., “Secondary nucleation of ice in sugar solutions and fruit juices,” AIChE J. 22, 131–140(1976).

    Article  CAS  Google Scholar 

  • Tavare, N. S., “Growth kinetics of ammonium sulphate in a batch cooling crystallizer using initial derivatives,” AIChE J. 31, 1733–1735 (1985).

    Article  CAS  Google Scholar 

  • Tavare, N. S., “Crystallization kinetics from transients of an MSMPR crystallizer,” Can J. Chem. Eng. 64, 752–758 (1986).

    Article  CAS  Google Scholar 

  • Tavare, N. S., “Batch crystallizers: A review,” Chem. Eng. Commun. 61, 259–318 (1987).

    Article  CAS  Google Scholar 

  • Tavare, N. S., “Comments on ‘The probability distribution of growth rates of anhydrous sodium sulphate,’” Ind. Eng. Chem. Res. 30, 803–804 (1991).

    Article  CAS  Google Scholar 

  • Tavare, N. S. and Chivate, M. R., “Growth and dissolution kinetics of potassium sulphate crystals in a fluidized bed crystallizer,” Trans. Inst. Chem. Eng. 57, 35–42 (1979).

    CAS  Google Scholar 

  • Tavare, N. S. and Garside, J., “Estimation of crystal growth and dispersion parameters using pulse response techniques in batch crystallizers,” Trans. Inst. Chem. Eng. 60, 334–344 (1982).

    CAS  Google Scholar 

  • Timm, D. C. and Larson, M. A., “Effects of nucleation kinetics on the dynamic behaviour of a continuous crystallizer,” AIChEJ. 14, 452–457 (1968).

    Article  CAS  Google Scholar 

  • Toyokura, K., Yamazoe, K., Magri, J., Yago, N. and Ayoma, Y., “Secondary nucleation of potash alum” In Mullin, J. W. (Ed.), Industrial Crystallization, Plenum Press, New York, 41–49 (1976).

    Chapter  Google Scholar 

  • Toyokura, K., Uchiyama M., Kawai M., Akutsu, H. and Ueno, T., “Secondary nucleation of KA1(SO4)2 12H2O, MgSO4 7H2O and CuSO4 5H2O,” in Jancic, S. J. and de Jong, E. J.(Eds.), Industrial Crystallization, North-Holland, Amsterdam, 87–96 (1982).

    Google Scholar 

  • Verigin, A. N., Shuhuplyak, I. A., Mikhalev, M. F. and Kulikov, V. N., “Investigation of crystallization kinetics with programmed variation of the solution temperature,” J. Appl.Chem. USSR 52, 1801–1803 (1980).

    Google Scholar 

  • Wang, B. C. and Luss, R., “Increasing the size of region of convergence for parameter estimation through the use of shorter data length,” Int. J. Control 31, 947–972 (1980).

    Article  Google Scholar 

  • Wey, J. S. and Estrin, J., “Modelling the batch crystallization process. The ice-brine system,” Ind. Eng. Chem. Process Des. Dev. 12, 236–246 (1973).

    Article  CAS  Google Scholar 

  • Wey, J. S. and Terwilliger, J. P., “Letter to the Editor: Comments on Lee’s communication, (AIChE J. 24, 535–537 (1978)),”

    Article  Google Scholar 

  • Wey, J. S. and Terwilliger, J. P., “Letter to the Editor: Comments on Lee’s communication, AIChE J. 25, 208 (1979).

    Article  Google Scholar 

  • Will, E. J., Bijvolet, O. L. M., Blomen, L. J. M. J. and Linden, H. V. D., “Growth kinetics of calcium oxalate monohydrate: I: Method and validation,” J. Crystal Growth 64,297–305 (1983a).

    Article  CAS  Google Scholar 

  • Will, E. J., Bijvolet, O. L. M., Blomen, L. J. M. J. and Linden, H. V. D., “Growth kinetics of calcium oxalate monohydrate: II: variation of seed concentration.” J. Crystal Growth 64, 306–315 (1983b).

    Article  Google Scholar 

  • Will, E. J., Bijvolet, O. L. M., Blomen, L. J. M. J. and Linden, H. V. D., “Growth kinetics of calcium oxalate monohydrate: III: Variation of solution composition,” J. Crystal Growth 64, 316–325 (1983c).

    Article  Google Scholar 

  • Witkowski, W. R., Miller, S. M. and Rawlings, J. B., “Light scattering measurements to estimate kinetic parameters of crystallization,” in Myerson, A. S. and Toyokura, K. (Eds.), Crystallization as a Separation Process, ACS Symp. Ser. No.438, American Chemical Society, Washington, D.C., 102–114(1990).

    Chapter  Google Scholar 

  • Xugen, V. T. and Svrcek, W. Y, “On equivalence of the Gauss-Newton techniques, the parameter influence coefficient technique and the quasilinearization technique in dynamic system identification by least squares,” J. Optimization Theory Applic. 22, 117–123 (1977).

    Article  Google Scholar 

  • Youngquist, G. R. and Randolph, A. D., “Secondary nucleation in a class II system, ammonium sulfate-water,”, AIChE J. 18, 421–429 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tavare, N.S. (1995). Characterization of Crystallization Kinetics from Batch Experiments. In: Industrial Crystallization. The Springer Chemical Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0233-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0233-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0235-1

  • Online ISBN: 978-1-4899-0233-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics