Crystallization Techniques and Phenomena

  • Narayan S. Tavare
Part of the The Springer Chemical Engineering Series book series (PCES)

Abstract

In the chemical and process industries, crystallization is a widely used method for the production and purification of both intermediates and products. In previous chapters, the analysis of crystallizing systems showed that many factors, including kinetics of rate processes, hydrodynamics, mode of operations, and vessel geometry influence the performance of such systems, and the analogous design methodology developed from chemical reaction engineering was presented. In this chapter, brief reviews on some of the less conventional and industrially important crystallization processes and phenomena are reported.

Keywords

Substitute Aniline Unreacted Core Scrape Surface Heat Exchanger Crystallization Technique Water Insoluble Substance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anwar, M. M., Cook, S. T. M., Hanson, C. and Pratt, M. W. T., “Separation of 2,3-and 2,6-dichlorophenols by dissociation extraction”, Proc. Int. Solv. Extr. Conf. 1771, 2, 671–676 (1971b).Google Scholar
  2. Anwar, M. M., Cook, S. T. M., Hanson, C. and Pratt, M. W. T., “Separations of mixtures of 2,6-lutidine with 3-and 4-picolones by dissociation extraction,” Proc. Int. Solv. Extr. Conf. 1974 1, 895–910(1974).Google Scholar
  3. Anwar, M. M., Hanson, C. and Pratt, M. W. T., “Dissociation extraction: Part I. General theory,” Trans. Inst. Chem. Eng. 49, 95–100 (1971a).Google Scholar
  4. Anwar, M. M., Hanson, C. and Pratt, M. W. T., “An improved dissociation extraction for separations of acidic or basic isomers,” Proc. Int. Solv. Extr. Conf. 1971 2, 911–915, (1971c).Google Scholar
  5. Anwar, M. M, Hanson, C. and Pratt, M. W. T., “Dissociation extraction: Part II. Multistage extraction,” Trans. Inst. Chem. Eng. 51, 151–158 (1973).Google Scholar
  6. Anwar, M. M., Pratt, M. W. T. and Snaheen, M. Y., “Development in dissociation extraction,” Proc Int Solv Extr Conf 1980 2, 1–10, 80-64 (1980).Google Scholar
  7. Aquilano, D., Franchini-Angela, M., Rubbo, M., Mantovani, G. and Vaccari, G., “Growth morphology of polar crystals: a comparison between theory and experiment in sucrose,” J. Crystal Growth 61, 369–376 (1983).CrossRefGoogle Scholar
  8. Ausman, J. M. and Watson, C. C., “Mass transfer in a catalyst pellet during regeneration,” Chem. Eng. Sci. 17, 323–329 (1962).CrossRefGoogle Scholar
  9. Balasubramanian, D. J., Srinivas, V., Gaikar, V. G. and Sharma, M. M., “Aggregation behaviour of hydrotrope compounds in aqueous solution,” J. Phys. Chem. 93, 3865–3871 (1989).CrossRefGoogle Scholar
  10. Bamforth, A. W., Industrial Crystallization, Leonard Hill, London (1965).Google Scholar
  11. Becker, P., Phosphate and Phosphoric Acid, Vol. 3, Fertilizer Science and Technology Series, Marcel Dekker, New York (1983).Google Scholar
  12. Bennema, P. and van der Eerden, J. P., “Crystal growth from solution: Development in computer simulation,” J. Crystal Growth 42, 201–213 (1977).CrossRefGoogle Scholar
  13. Ben-Yoseph, E., Kellerman, D., Meyer, D. and Wahrmann, S., “Use of concentrated brine to improve phosphoric acid extraction,” Proc. Int. Solv. Extr. Conf. 1983, 2,413–414 (1983).Google Scholar
  14. Bischoff, J.L., “Catalysis inhibition and the calcite-aragonite problem II. The vaterite-aragonite transformation,” Am. J. Sci. 266, 80–90 (1968).CrossRefGoogle Scholar
  15. Bliznakov, G., “Le mechanism de l’action des additives adsorbants dans la croissance crystalline,” in Kern R. (Ed.), Adsorption et croissance cristalline, Colloquium No. 152, (Symposium proceedings) CNRS, Paris, p. 283 (1965).Google Scholar
  16. Boistelle, R., “Survey of crystal habit modification in solution”, In Mullin, J. W. (Ed.), Industrial Crystallization, (6th Symposium Usti. nad Labem), Plenum, New York, 203–214 (1976).CrossRefGoogle Scholar
  17. Boistelle, R. and Abbona, F., “Morphology, habit and growth of newberyite crystals (MgHPO4.3H2O),” J. Crystal Growth 54, 275–295 (1981).CrossRefGoogle Scholar
  18. Boistelle, R., Abbona, F. and Madsen, H. E. L., “On the transformation of struvite into newberyite in aqueous systems,” Physics and Chemistry of Minerals 9, 216–222 (1983).CrossRefGoogle Scholar
  19. Boistelle, R. and Simon, B., “Epitaxes de CdCl2.2NaC1.3H2O sur les faces (100), et (111) des NaCl,” J. Crystal Growth 26, 140–146 (1974).CrossRefGoogle Scholar
  20. Booth, H. S. and Evertson, H. E., “Hydrotrope solubilities: Solubilities in 40% sodium xylene sulphonate,”, Int. Eng. Chem. 40, 1491–1493 (1948).CrossRefGoogle Scholar
  21. Booth, H. S. and Evertson, H. E., “Hydrotrope solubilities: Solubilities in aqueous sodium aryl sulphonate solutions,” Ind. Eng. Chem. 41, 2627–2628 (1949).CrossRefGoogle Scholar
  22. Booth, H. S. and Evertson, H. E., “Hydrotropic solubilities: Solubilities in aqueous sodium o-, m- and p- xylene sulphonate,” Ind. Eng. Chem. 42, 1536–1537 (1950).CrossRefGoogle Scholar
  23. Botsaris, G. D., “Effect of impurities in crystallization processes,” in Jancic, S. J. and de Jong, E. J. (Eds.), Industrial Crystallization’ 81 (8th Symposium, Budapest), North-Holland, Amsterdam, 123–135 (1982).Google Scholar
  24. Bowen, J. H. and Cheng, C. K., “A diffuse interface model for fluid-solid reaction,” Chem. Eng. Sci. 24, 1829–1831 (1969).CrossRefGoogle Scholar
  25. Brecevic, L., Skrtic, D. and Garside, J., “Transformation of calcium oxalate hydrates,” J. Crystal Growth 74, 399–408 (1986).CrossRefGoogle Scholar
  26. Brenken, H. and Richter, F., “Urea dewaxing expands feed choice,” Hydrocarbon Processing, 127-129 (Jan. 1979).Google Scholar
  27. Budz, J., Jones, A. G. and Mullin, J. W., “Effect of selected impurities on the continuous precipitation of calcium sulphate (gypsum),”J. Chem. Technol. Biotechnol. 36,153–161 (1986).CrossRefGoogle Scholar
  28. Calvelo, A. and Smith, J. M., “Intrapellet transport in gas-solid noncatalytic reactions,” in Chemeca’ 70 (Proceeding), 3, 1–24 (1971).Google Scholar
  29. Cardew, P. T. and Davey, R. J., “The kinetics of solvent-mediated phase transformation,” Proc. R. Soc. Lond. A398, 415–428 (1985).Google Scholar
  30. Cardew, P. T., Davey, R. J. and Ruddick, A. J., “Kinetics of polymorphic solid-state transformations,” J. Chem. Soc. Faraday Trans. 2 80, 659–668 (1984).CrossRefGoogle Scholar
  31. Casper, C., “Investigation of evaporative freeze crystallization,” G. Chem. Eng. 4, 219–225 (1981).Google Scholar
  32. Chandler, J. L., “The effect of supersaturation and flow conditions on the initiation of scale formation,” Trans. Inst. Chem. Eng. 42, T24–T34 (1964).Google Scholar
  33. Chivate, M. R. and Shah, S. M., “Separation of w-cresol by extractive crystallization,” Chem. Eng. Sci. 5, 232–241 (1956).CrossRefGoogle Scholar
  34. Chowdhury, J., “CPI warm up to freeze concentration,” Chem. Eng., 25 April, 24–31 (1988).Google Scholar
  35. Cima, M. J. and Rhine, W. E., “Powder processing for microstructural control in ceramic superconductors,” Adv. Ceram. Mater. 2 (313), 329–336 (1987).Google Scholar
  36. Clements, G. P. and Simons, A. J. F., “Separations of ortho-phenyl phenol from ortho-cyclohexyl phenol by L-L — extraction with a sodium hydroxide solution,” Proc. Int. Solv Extr. Conf. 1980 2, 1–10,80-65(1980).Google Scholar
  37. Colonia, E. J., Raynaud-Lacroze, P. O. and Tavare, N. S., “Separation of isomers: Hydrotropy and precipitation,” in Rojkowski, Z. H. (Ed.), Industrial Crystallization’ 93, Warsaw, 3-153-3-159(1993).Google Scholar
  38. Colonia, E. J. and Tavare, N. S., “Separation of eutectics through hydrotropy,” paper presented at 1994 IChemE Research Event, University College London, London (1994).Google Scholar
  39. Dale, G. H., “Crystallization, extractive and adductive”, in McKetta, J. J. (Ed.), Encyclopedia of Chemical Processing and Design, 13, 456–506 (1981).Google Scholar
  40. Davey, R. J. “The control of crystal habit”, in de Jong, E. J. and Jancic, S. J. (Eds.), Industrial Crystallization 78, (7th Symposium, Warsaw), North-Holland, Amsterdam, 169–183 (1979).Google Scholar
  41. Davey, R. J., Black, S. M., Bromley, L. A., Coltier, D., Dobbs, B. and Rout, J. E., “Molecular design based on recognition at inorganic surfaces,” Nature 353, 549–551 (1991).CrossRefGoogle Scholar
  42. Davey, R. J., Guy, P. D. and Ruddick, A. J., “The IV-III polymorphic phase transition in aqueous slurries of ammonium nitrate,” J. Colloid Interface Sci. 108, 189–192(1985).CrossRefGoogle Scholar
  43. Davey, R. J., Mullin, J. W. and Whiting, M. J. L., “Habit modification of succinic acid crystals grown from different solvents”, J. Crystal Growth 58, 304–312 (1982).CrossRefGoogle Scholar
  44. Davey, R. J. and Richards, J., “A solvent mediated phase transformation in an aqueous suspension of an azo disperse dye,”/. Crystal Growth 71, 597–601 (1985).CrossRefGoogle Scholar
  45. Davies, G. A., Yang, M. and Garside, J., “The selective separation and precipitation of salts in a liquid surfactant membrane system,” in Mersmann, A. (Ed.), Industrial Crystallization’ 90, Garmisch-Partenkirchen, Germany, 163–168 (1990).Google Scholar
  46. de Vreugd, C. H., Witkamp, G. J. and van Rosmalen, G. M., “The influence of lanthanide ions on the growth kinetics of gypsum and on the uptake of cadmium,” in Mersmann, A. (ed), Industrial Crystallization’ 90, 649-654 (1990).Google Scholar
  47. Dickey, L. C, Radewonuk, E. R. and Dallmer, M. F., “Determining ice content of a fine ice slurry from density measurements,” AIChEJ. 35, 2033–2036 (1989).CrossRefGoogle Scholar
  48. Dickinson, E., Goller, M. I., McClements, D. J. and Povey, M. J. W., “Monitoring crystallization in simple and mixed oil-in-water emulsions using ultrasonic velocity measurement, in food polymers, gels and colloids,” Dickinson, E. (Ed.), R. Soc. Chem., Series III, 171-179 (1981).Google Scholar
  49. Dikshit, R. C. and Chivate, M. R., “Separation of nitrochlorobenzenes by extractive crystallization,” Chem. Eng. Sci. 25, 311–317 (1970).CrossRefGoogle Scholar
  50. Dikshit, R. C. and Chivate, M. R., “Selectivity of solvent for extractive crystallization,” Chem. Eng. Sci. 26, 719–727 (1971).CrossRefGoogle Scholar
  51. Doherty, R. and Roberts, K. J., “Modelling of the morphology of molecular crystals: anthracene, biphenyl and ß-succinic acid,” J. Crystal Growth 88, 159–168 (1988).CrossRefGoogle Scholar
  52. Dudukovic, M. P. and Lamba, H. S., “Solution of moving boundary problems for gas-solid non-catalytic reactions by orthogonal collection,” Chem. Eng. Sci. 33, 303–314 (1978a).CrossRefGoogle Scholar
  53. Dudukovic, M. P. and Lamba, H. S., “A zone model for reactions of solid particles with strongly adsorbing species,” Chem. Eng Sci. 33, 471–478 (1978b).CrossRefGoogle Scholar
  54. Duncun, A. G. and Philips, R. H., “The dependence of heat exchanger fouling on solution undercooling,” J. Sep. Proc. Technol. 1, 29–35 (1979).Google Scholar
  55. Duncun, A. G. and West, C. D., “Prevention of incrustation on crystallizer heat exchangers by ultrasonic vibration,” Trans. Inst. Chem. Eng. 50, 109–114 (1972).Google Scholar
  56. Egan, C. J. and Luthy, R. V., “Separation of xylenes,” Ind. Eng. Chem. 47, 250–253 (1955).CrossRefGoogle Scholar
  57. Eidelmann, N., Azoury, R. and Sarig, S., “Reversal of trends in impurity effects on crystallization parameters”, J Crystal Growth 74, 1–9 (1986).CrossRefGoogle Scholar
  58. Elgeti, K. and Casper, C, “On concentration of heat sensitive liquid mixtures by evaporation”, Ger. Chem. Eng. 2, 147–152 (1979).Google Scholar
  59. Elnashaie, S. S., Al-Fariss, T. F., Abdel Razik, S. M. and Ibrahim, H. A., “Investigation of acidulation and coating of Saudi phosphate rocks, 1. Batch acidulation”, Ind. Eng. Chem. Res. 29, 2389–2401 (1990).CrossRefGoogle Scholar
  60. Eyal, A. and Baniel, A., “Extraction of strong mineral acids by organic acid-base couples,” Ind. Eng. Chem. Process Des. Dev. 21, 334–337 (1982).CrossRefGoogle Scholar
  61. Eyal, A. M., Hajdu, K., Appelbaum, C. and Baniel, A. M., “Recovery of acids and reactions mediated by acid-base solvents,” Int. Solv. Extr. Conf. 1983 2, 411–412 (1983).Google Scholar
  62. Findlay, R. A., “Adductive Crystallization,” in Schoen, H. M. (Ed.), New Chemical Engineering Separation Techniques, Interscience, New York, 257–318 (1962).Google Scholar
  63. Findlay, R. A. and Weedman, J. A., “Separation and purification by crystallization,” in Kobe, K. A. and McKetta, J. J. (Eds.), Advances in Petroleum Chemistry and Refining, Vol. 1, Interscience, New York, 119–209 (1958).Google Scholar
  64. Follner, H. and Schwarz, H., “Morphology and crystal growth of structurally related A2BX4 and A2BX3 compounds”, Zeitschrift Fur Kristallographie 161, 35–43 (1982).CrossRefGoogle Scholar
  65. Gaikar, V. G. and Sharma, M. M., “Separations of cumidines,” J. Sep. Process Technol 5, 49–52 (1984a).Google Scholar
  66. Gaikar, V. G. and Sharma, M. M. “Separation of substituted phenols and chlorophenols by dissociation extraction; new strategies, new regenerative method,” J. Sep. Process Technol. 5, 53–58 (1984b).Google Scholar
  67. Gaikar, V. G. and Sharma M. M., “Dissociation extraction; prediction of separation factor and selection of solvent,” Solv. Ext. Ion Exchanged, 679-696 (1985).Google Scholar
  68. Gaikar, V. G. and Sharma, M. M., “Extractive separations with hydrotropes,” Solvent Extr. Ion Exch. 4, 839–836 (1986).CrossRefGoogle Scholar
  69. Gaikar, V. G. and Sharma, M. M, “Dissociation extractive crystallization,” Ind. Eng. Chem. Res. 26, 1045–1048 (1987a).CrossRefGoogle Scholar
  70. Gaikar, V. G. and Sharma, M. M. “New strategies for separations through reactions,” Sadhana 10, 163–183 (1987b).CrossRefGoogle Scholar
  71. Gaikar, V. G., Mahapatra, A. and Sharma, M. M., “New strategies in extractive distillations: use of aqueous solution of hydrotrope and organic bases as solvent for organic acids,” Sep. Sci. Technol. 23, 429–436 (1988).CrossRefGoogle Scholar
  72. Gaikar, V. G., Mahapatra, A. and Sharma, M. M., “Separation of close boiling point mixtures (pcresol/m-cresol, guaiacol/alkylphenols, 3-picoline/4-picoline, substituted anilines) through dissociation extractive crystallization,” Ind. Eng. Chem. Res. 28, 199–204 (1989).CrossRefGoogle Scholar
  73. Gaikar, V. G. and Sharma, M. M., “Separations through reactions and other novel strategies,” Separation and Purification Methods 18, 111–176 (1989).CrossRefGoogle Scholar
  74. Geetha, K. K., Tavare, N. S., Gaikar, V. G., “Separation of o- and p-chloronitrobenzenes through hydrotropy,” Chem. Eng. Commun. 102, 211–224 (1991).CrossRefGoogle Scholar
  75. Goldmann, G. and Spott G., “Scaling in crystallizers: A new and realistic measurement method,” Chem. Ing. Tech. 53 713–716 (1981).CrossRefGoogle Scholar
  76. Hartman, P. and Perdok, W. G., “On the relations between structure and morphology of crystals,” Acta Crystallogr. 8, 49–52 (1955).CrossRefGoogle Scholar
  77. Hartman, P., “Attachment energy as a habit controlling factor”, J. Crystal Growth 49, 157–165 (1980).CrossRefGoogle Scholar
  78. Heist, J. A., “Freeze crystallization,” Chem. Eng. 7 May 72-82 (1979).Google Scholar
  79. Heist, J.A., “Freeze crystallization applications for wastewater recycle and reuse,” AIChE Symp. Sen No. 209, 77, 259-272 (1981).Google Scholar
  80. Holeci, I., “Emulsion crystallization of organic substances,” CSSR SNTL Technical Digest 71, 515–517(1965).Google Scholar
  81. Honigmann, B. and Horn, D., “α-β transformations of copper phthalocyanine in organic suspensions”, in Smith, A. L. (Ed.), Particle Growth in Suspensions, Academic, London, 283–294 (1973).Google Scholar
  82. Hoppe, A., “Dewaxing with urea”, in McKetta, J. J. (Ed.), Advances in Petroleum Chemistry and Refining, Vol. 8, Interscience, New York, 192–234 (1964).Google Scholar
  83. Huang, J. S. and Barduhn, A. J., “The effect of natural convection on ice crystal growth rates in salt solutions,” AIChE J. 31, 747–752 (1985).CrossRefGoogle Scholar
  84. Huige, N. J. J. and Thisjssen, H. A. C. “Production of large crystals by continuous ripening in a stirred tank,” J. Crystal Growth 13/14, 483–487 (1972).CrossRefGoogle Scholar
  85. Imamutdinova, V. M., “Rates of dissolution of borates in HC1 solutions” (trans.), Zh. Prikl. Khim 40, 1826–1828(1966).Google Scholar
  86. Ishida, M. and Wen, C. Y., “Comparison of kinetic and diffusional models for solid-gas reactions,” AIChE J. 14, 311–317 (1968).CrossRefGoogle Scholar
  87. Jackson, K. A., Liquid Metals and Solidification, American Society of Metals, Cleveland (1958).Google Scholar
  88. Jadhav, V. K., Chivate, M. R. and Tavare, N. S., “Separation of p-cresol from its mixture with 2,6-xylenol by adductive crystallization,” J. Chem. Eng. Data 36, 249–251 (1991).CrossRefGoogle Scholar
  89. Jadhav, V. K., Chivate, M. R. and Tavare, N. S., “Separation of phenol from its mixture with o-cresol by adductive crystallization,” J. Chem. Eng. Data 37, 232–235 (1992).CrossRefGoogle Scholar
  90. Jagirdar, G. C. and Sharma, M M., “Recovery and separations of mixtures of organic acids from dilute aqueous solutions,” J. Sep. Process Technol. 1,40–43 (1980).Google Scholar
  91. Jagirdar, G. C. and Sharma, M. M., “Separations of close boiling mixtures of heterocyclic amines and LTC tar acids by dissociation extraction,” J. Sep. Process Technol. 2, 37–41 (1981a).Google Scholar
  92. Jagirdar, G. C. and Sharma, M. M, “Separation of close boiling substituted anilines; gas-liquid versus liquid-liquid dissociation extraction,” J. Sep. Process Technol. 2, 7–12 (1981b).Google Scholar
  93. Janakiraman, B. and Sharma, M. M., “Enhancing rates of multiphase reactions through hydrotropy,” Chem. Eng. Sci. 40, 2156–2158 (1985).CrossRefGoogle Scholar
  94. Kandori, K., Kijiro, K. and Kitahara, A., “Formation of ionic water/oil microemulsions and their application in the preparation of calcium carbonate particles,” J. Colloid Interface Sci. 122, 78–82(1988).CrossRefGoogle Scholar
  95. Kane, S. G., Evans, T. W., Brian, P. L. T. and Sarofim, A. F., “Determination of the kinetics of secondary nucleation in batch crystallizers,” AIChE J. 20, 855–862 (1974).CrossRefGoogle Scholar
  96. Kern, R. (Ed.), “Adsorption et croissance cristalline”, Colloquium No 152 (Symposium Proceedings), CNRS, Paris (1965).Google Scholar
  97. Kitamura, M, “Polymorphism in the crystallization of L-glutamic acid,” J. Crystal Growth 96, 541–546(1989).CrossRefGoogle Scholar
  98. Kitamura, M. and Nakai, T., “Adductive crystallization with nickel complex for p-xylene,” in Jancic, S. J. and de Jong, E. J. (Eds.), Industrial Crystallization’ 81, (Proc. 8th Symposium on Industrial Crystallization, Budapest, 1981), North Holland, Amsterdam, 259–264 (1982).Google Scholar
  99. Kyprianidou-Leodidou, T. C. and Botsaris, G. D., “Freeze concentration of aqueous solutions,” in Myerson, A. S. and Toyokura, K. (Eds.), Crystallization as a Separation Process, ACS Symp. Ser, No. 438, American Chemical Society, Washington D.C., 364–372 (1990).CrossRefGoogle Scholar
  100. Laine,.J., “Manufacture of precipitated calcium carbonate,” Paperija Puu-Papper och Tra. ii, 725–734(1980)Google Scholar
  101. Landau, E. M., Levanon, M., Leiserowitz, L., Lahav, M. and Sagiv, J., “Transfer of structural information from Langmuir monolayers to three-dimensional growing crystals,” Nature 318, 353–356(1985).CrossRefGoogle Scholar
  102. Levenspiel, O., Chemical Reaction Engineering, 2nd ed., Wiley, New York, (1972).Google Scholar
  103. Levins, D. M. and Glastonbury, J. R., “Particle-liquid hydrodynamics and mass transfer in a stirred vessel,” Trans. I. Chem. Eng. 50, 32–41, 132-146 (1972).Google Scholar
  104. McCandless, F. P., “Separation of C9 alkyl benzenes by induced extractive crystallization,” Ind. Eng. Chem. Product Res. Dev. 19, 612–616 (1980).CrossRefGoogle Scholar
  105. McCandless, F. P., Cline, R. E. and Cloninger, M. O., “Separation of xylenes and ethyl benzene by extractive crystallization with thiourea,” Ind. Eng. Chem. Product Res. Dev., 13, 214–216 (1974).CrossRefGoogle Scholar
  106. McCandless, F. P., Mountain, R. D., Olson, R. D., Roth, S. P. and van Dyke, L. J., “Separation of tri — methylpentanes by extractive crystallization with thiourea,” Ind. Eng. Prod. Res. Dev. 11, 463–464(1972).CrossRefGoogle Scholar
  107. McKee, R. H., “Use of hydrotrope solutions in industry,” Ind. Eng. Chem. 38, 382–384 (1946).CrossRefGoogle Scholar
  108. Mann, S., Heywood, B. R., Rajam, S. and Birchall, J. D., “Controlled crystallization of calcium carbonate under stearic acid monolayers,” Nature 334, 692–695 (1988).CrossRefGoogle Scholar
  109. Manteghian, M., Reactive Crystallization of Borax with Organic Acid, Ph.D. thesis, University of Manchester (1989).Google Scholar
  110. Manteghian, M., Tavare, N. S. and Garside, J., “Production of boric acid through reaction of borax with propionic acid,” in Mersmann, A. (Ed.), Industrial Crystallization’ 90, Garmisch-Partenkirchen, Germany, 279–284 (1990).Google Scholar
  111. Mantri, V. B., Gokarn, A. N. and Doraiswamy, L. K., “Analysis of gas-solid reactions: formulation of a general model,” Chem. Eng. Sci. 31, 779–785 (1976).CrossRefGoogle Scholar
  112. Margolis, G., Sherwood, T. K., Brian, P. L. T. and Sarofim, A. F., “Performance of a continuous wellstirred ice crystallizer,” Ind. Eng. Chem. Fundam. 10, 439–452 (1971).CrossRefGoogle Scholar
  113. Nakahara, Y., Mizuguchi, M. and Miyata, K., “Effects of surfactants on CaCO3 spheres prepared by interfacial reaction method,” J. Colloid Interface Sci. 68, 401–407 (1979).CrossRefGoogle Scholar
  114. Nancollas, G. H. and Zawacki, S. J., “Inhibitors of crystallization and dissolution”, In Jancic, S. J. and de Jong, E. J. (Eds.), Industrial Crystallization’ 84, (9th Symposium, The Hague), Amsterdam, 51-60 (1984).Google Scholar
  115. Neuberg, C, “Hydrotropy”, Biochem. Z. 76, 107–176 (1916).Google Scholar
  116. Omran, A. M. and King, C. J., “Kinetics of ice crystallization in sugar solutions and fruit juices,” AIChEJ. 20, 795–803 (1974).CrossRefGoogle Scholar
  117. Ostwald, W., “Lehrbuch der algemeinen Chemie,” 2,444 Englemann, Leipzig (1896).Google Scholar
  118. Ostwald, W., “Studien uber die Bildung und Umwandlung fester korper”, Zeitschrift für Physikalische Chemie, 22, 289–330 (1897).Google Scholar
  119. Pandit, A. and Sharma, M. M. “Intensification of heterogeneous reactions through hydrotropy, alkaline hydrolysis of esters and oximation of cyclododecanone,” Chem. Eng. Sci. 42, 2517–2523 (1987).CrossRefGoogle Scholar
  120. Parikh, N. C. and Chivate, M. R., “Separation of isomeric substances by extractive and adductive crystallization,”/rtöfow Chem. Engr. (Trans) 8, 111–115 (1966).Google Scholar
  121. Poochikian, G. D. and Gradock, J. C, “Enhanced chartreusin solubility by hydroxybenzoate hydrotropy,” J. Pharm. Sci., 68, 728–732 (1979).CrossRefGoogle Scholar
  122. Popovitz-Biro, R., Weissbuch, I., Jacquemain, D., Leveiller, F., Leiserowitz, L. and Lahav, M., “Studies on the early stages of crystal nucleation”, in Garside, J., Davey, R. J. and Jones, A. G. (Eds.), Advances in Industrial Crystallization (Symp. Proceedings) Butterworth-Heinemann, Oxford, 3–19(1991).Google Scholar
  123. Rajagopal, S., Ng, K. M. and Douglas, J. M., “Design and economic trade-offs of extractive crystallization processes,” AIChEJ. 37, 437–446 (1991).CrossRefGoogle Scholar
  124. Ramchandran, P. A. and Doraiswamy, L. K., “Modelling of non-catalytic gas-solid reactions,” AIChE 7.28,881–900(1982).CrossRefGoogle Scholar
  125. Rath, H., “The nature of hydrotropy and its significance in industrial chemistry,” Tenside 2(1), 1–6 (1965) (German).Google Scholar
  126. Rath, H., “The nature of hydrotropy and its significance in industrial chemistry,” Chem. Abstr., 62, 6159e (1965).Google Scholar
  127. Raynaud-Lacroze, P. O. and Tavare, N. S., “Separation of 2-naphthol: Hydrotropy and precipitation,” Ind. Eng. Chem. Res. 32, 685–691 (1993).CrossRefGoogle Scholar
  128. Rinaudo, C. and Boistelle, R., “The occurrence of uric acid and the growth morphology of the anhydrous monoclinic modification,” J. Crystal Growth 49, 569–579 (1980).CrossRefGoogle Scholar
  129. Saleh, A. M. and El-Khordagui, L. K., “Hydrotropic agents: A new definition,” Int. J. Pharm. 24, 231–238 (1985).CrossRefGoogle Scholar
  130. Saleh, A. M., Badwan, A. A., El-Khordagui, L. K. and Khalil, S. A., “The solubility of benzodiazepines in sodium salicylate solution and a proposed mechanism for hydrotropic solubilization,” Int. J. Pharm. 13, 67–74 (1983a).Google Scholar
  131. Saleh, A.M., Badwan, A.A. and El-Khordagui, L.K., “A study of hydrotropic salts, cyclohexanol and water systems”, Int. J. Pharm. 17,115–119 (1983b).CrossRefGoogle Scholar
  132. Santhanam, C. J., “Adductive crystallization processes”, Chem. Eng. 73, 165–170 (1966).Google Scholar
  133. Sato, K. and Boistelle, R., “Stability and occurrence of polymorphic modifications of stearic acid in polar and nonpolar solutions,” J. Crystal Growth 66, 441–450 (1984).CrossRefGoogle Scholar
  134. Sato, K., Suzuki, K. and Okada, M., “Solvent effects on kinetics of solution-mediated transition of stearic acid polymorphs,” J. Crystal Growth 72, 699–704 (1985).CrossRefGoogle Scholar
  135. Savitt, S. A. and Othmer, D. F., “Separation of m- and p-cresols from their mixtures,” Ind. Eng. Chem. 44,2428–2431(1952).CrossRefGoogle Scholar
  136. Sharma, M. M. and Doraiswamy, L. K. Heterogeneous Reactions: Analysis, Examples and Reactor Design, Vol. I and II, Wiley, New York (1984).Google Scholar
  137. Shen, J. and Smith, J. M, “Diffusional effects of gas-solid reactions,” Ind. Eng. Chem. Fundam. 4, 293–301 (1965).CrossRefGoogle Scholar
  138. Shi, Y., Liang, B. and Hartel, R. W., “Crystallization of ice from aqueous solutions in suspension crystallizers”, in Myerson, A. S. and Toyokura, K. (Eds.), Crystallization as a Separation Process, ACS Symp. Ser. No. 438, American Chemical Society, Washington D. C, 316–328 (1990).CrossRefGoogle Scholar
  139. Shirai, Y, Nakanishi, K., Matsuno, R. and Kamikubo, T., “On the kinetics of ice crystallization in batch crystallizers,” AIChE J. 31, 676–682 (1985).CrossRefGoogle Scholar
  140. Shirai, Y, Sakai, K., Nakanishi, K. and Matsuno, R., “Analysis of ice crystallization in continuous crystallizers based on a particle size-dependent growth rate model,” Chem. Eng. Sci. 41, 2241–2246(1986).CrossRefGoogle Scholar
  141. Shock, R. A. W., “Encrustation of Crystallizers,” J. Sep. Proc. Technol. 4, 1–13 (1983).Google Scholar
  142. Sivakama Sundari, C, Raman, B. and Balasubramanian, D., “Hydrophobic surface in oligosaccharides: linear dextrins are amphiphilic chains,” Biochim. Biophys. Acta., 1065, 35–41 (1991).CrossRefGoogle Scholar
  143. Skoda, W. and Van den Tempel, M., “Crystallization of emulsified triglycerides,” J. Colloid Sci. 18, 568–584(1963).CrossRefGoogle Scholar
  144. Sohnel, O., Rieger, A. and Krajca, I., “Kinetics of phase transition of magnesium sulphite hydrates”, in Mersmann, A., Industrial Crystallization’ 90, 529–534, Garmisch-Partenkirchen, Germany (1990).Google Scholar
  145. Srinivas, V, Sundaram, C. and Balasubramanian, D., “Molecular structure as a determinant of hydrotropic action: a study of polyhydroxybenzenes,” Indian J. Chem., 30B, 147–152 (1991).Google Scholar
  146. Stocking, J. H. and King, C. J., “Secondary nucleation of ice in sugar solutions and fruit juices,” AIChE J. 22, 131–140(1976).CrossRefGoogle Scholar
  147. Sugimoto, T., “Preparation of monodispersed colloidal particles”, Adv. in Colloid and Inter. Sci., 28, 65–108(1987).CrossRefGoogle Scholar
  148. Sun, Y C, “Water: key to new crystallization process for purifying organics,” Chem. Eng. 12 July, 87-90(1971).Google Scholar
  149. Suzuki, M., Ogaki, T. and Sato, K, “Crystallization and transformation mechanism of a, α.β and γ-polymorphs of ultra pure oleic acid”, J. Am. Oil and Color Chemists Soc. 62, 1600–1604 (1985).CrossRefGoogle Scholar
  150. Szekely, J. and Evans, J. W., “A structural model for gas-solid reactions with a moving boundary,” Chem. Eng. Sci. 25, 1091–1106 (1970).CrossRefGoogle Scholar
  151. Szekely, J. and Evans, J. W, “Studies in gas-solid reactions: Part I. A structural model for the reaction of porous oxides with a reducing gas,” Met. Trans. 2,1691–1698 (1971a).CrossRefGoogle Scholar
  152. Szekely, J. and Evans, J.W., “Studies in gas-solid reactions: Part II. An experimental study of nickel oxide reduction with hydrogen,” Met. Trans. 2, 1699–1710 (1971b).CrossRefGoogle Scholar
  153. Tare, J. P. and Chivate, M. R., “Selection of a solvent for adductive crystallization,” Chem. Eng. Sci. 31, 893–899 (1976a).CrossRefGoogle Scholar
  154. Tare, J. P. and Chivate, M. R., “Separation of close boiling isomers by adductive and extractive crystallization,” AIChE. Symp. Series No. 153 72, 95–99 (1976b).Google Scholar
  155. Tavare, N. S. and Gaikar, V. G., “Precipitation of salicylic acid: Hydrotropy and reaction,” Ind. Eng. Chem. Res. 30, 722–728 (1991).CrossRefGoogle Scholar
  156. Tavare, N. S. and Garside, J., “Simulation of reactive precipitation in a semi-batch crystallizer,” Trans. Inst. Chem. Eng. 68A, 115–122 (1990).Google Scholar
  157. Tempkin, D.E., Crystallization Processes, Consultants Bureau, New York (1964).Google Scholar
  158. Toussaint, A. G. and Donders, A. J. M., “The mixing criterion in crystallization by cooling,” Chem. Eng. Sci. 29, 237–245 (1975).Google Scholar
  159. Ueda, S., “The mechanism of solubilization of water insoluble substances with sodium benzoate derivatives I. The interaction between water insoluble substances and sodium benzoate derivatives,” Chem. Pharm. Bull. (Tokyo) 14, 22–29 (1966a).CrossRefGoogle Scholar
  160. Ueda, S., “The mechanism of solubilization of water insoluble substances with sodium benzoate derivatives II. Solubilities of water insoluble substances in aqueous sodium benzoate solutions,” Chem. Pharm. Bull. (Tokyo) 14,29–38 (1966b).CrossRefGoogle Scholar
  161. Ueda, S., “The mechanism of solubilization of water insoluble substances with sodium benzoate derivatives III. Decrease of activity coefficient of water insoluble substances by addition of sodium benzoate derivatives in aqueous systems,” Chem. Pharm. Bull. (Tokyo) 14, 39–45 (1966c).CrossRefGoogle Scholar
  162. van Rosmalen, G. M., Marchee, W. G. J. and Bennema, P., “A comparison of gypsum crystals grown in silica gel and agar in the presence of additives,” J. Crystal Growth 35, 169–176 (1976).CrossRefGoogle Scholar
  163. van Rosmalen, G. M., Witkamp, G. J. and de Vreugd, C. H., “Additive and impurity effects in crystallization processes,” in Nyvlt, J. and Zacek, S. (Eds), Industrial Crystallization’ 87, (10th Symposium, Bechyne), Elsevier, Amsterdam, 15–20 (1989).Google Scholar
  164. van der Sluis, S., Meszaros, Y., Marchee, W. G. J., Wesselingh, H. A., Van Rosmalen, G. M., “The digestion of phosphate ore in phosphoric acid,” Ind. Eng. Chem. Res. 26, 2501–2505 (1987).CrossRefGoogle Scholar
  165. van den Tempel, M., “Crystallization in dispersed systems,” Colloques nationaux du CNRS, No. 938, Physicochemie des Composes Amphiphiles, 261-264 (1978).Google Scholar
  166. Veverka, F. and Nyvlt, J., “Growth of scale on a cooling surface during the stirring of a crystal suspension,” Chem Prum. 29, 123–127 (1979a).Google Scholar
  167. Veverka, F. and Nyvlt, J., “Characterization of systems by tendency to develop scale,” Chem Prum. 29, 580–582 (1979b).Google Scholar
  168. Veverka, F. and Nyvlt, J., “Temperature regime and start of scaling,” Chem Prum. 29, 623–626 (1979c).Google Scholar
  169. Wadekar, V. V, and Sharma, M. M., “Dissociation extraction,” J. Sep. Process Technol. 2, 1–15 (1981a).Google Scholar
  170. Wadekar, V. V. and Sharma, M. M, “Separation of close boiling organic acidsftases; binary and ternary systems: Substituted anilines; binary systems with thermally regenerative extractant; chlorophenols,” J. Sep. Process Technol. 2,28–32 (1981b).Google Scholar
  171. Wadekar, V. V. and Sharma, M. M., “Separations of close boiling substituted phenols by dissociation extraction,” J. Chem. Technol. Biotechnol. 31, 279–284 (1981c).CrossRefGoogle Scholar
  172. Walstra, P. and van Beresteyn, E. C. H., “Crystallization of milk fat in the emulsified state”, Neth-Milk, Dairy J. 29, 35–65 (1975).Google Scholar
  173. Weingaertner, D. A., Lynn, S. and Hanson, D. N., “Extractive crystallization of salts from concentrated aqueous solution,” Ind. Eng. Chem. Res. 30, 490–501 (1991).CrossRefGoogle Scholar
  174. Wen, C. Y, “Non-catalytic heterogeneous solid fluid reaction models”, Ind. Eng. Chem. 60, 34–54 (1968).CrossRefGoogle Scholar
  175. Wey, J. S. and Estrin, J., “Modelling the batch crystallization process. The ice-brine system,” Ind. Eng. Chem. Process Des. Dev. 12, 236–246 (1973).CrossRefGoogle Scholar
  176. White, D. E. and Carberry, J. J., “Kinetics of gas-solid non-catalytic reactions,” Can. J. Chem. Eng. 43, 334–337(1965).CrossRefGoogle Scholar
  177. Winsor, P. A., “Hydrotropy and related emulsification process,” Trans. Faraday Soc. 54, 762–772 (1950).CrossRefGoogle Scholar
  178. Wöhlk, W. and Hofmann, G., “Encrustation problems-possible avoidance,” Chem. Eng. Tech. 52, 898–900(1980).Google Scholar
  179. Yagi, S. and Kunni, D., “Studies on combustion of carbon particles in flames and fluidized beds”, in 5th Symposium (International) on Combustion, Reinhold, New York, 231–252 (1955).Google Scholar
  180. Yang, M., Davies, G. A. and Garside, J., “The preparation of solids in a liquid membrane emulsion: the control of particle size,” Powder Technol 65, 235–242 (1991).CrossRefGoogle Scholar
  181. Zuckerman, B., “Formation of mixed silver halides by a conversion process,” Photographic Science and Engineering 20, 111–116 (1976).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Narayan S. Tavare
    • 1
  1. 1.University of Manchester Institute of Science and Technology (UMIST)ManchesterUK

Personalised recommendations