Skip to main content

Mixing

  • Chapter
  • 1094 Accesses

Part of the book series: The Springer Chemical Engineering Series ((PCES))

Abstract

This chapter attempts a general and unifying treatment from a chemical reaction engineering viewpoint, in which the Lagrangian approach is used to describe mixing in a transport process primarily in continuous crystallizer systems. A rational approach to crystallizer description and design requires a solution of the relevant conservation equations representing crystal population and mass and energy balances, together with a description of the kinetics of rate processes involved and a definition of flow patterns within the vessels. The performance of a crystallizer system depends not only on the pertinent intrinsic kinetics of growth and nucleation processes, but also on the physical processes occurring in the vessel (Figure 102).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abegg, C. F. and Balkrishnan, N. S., “The tanks-in-series concept as a model for imperfectly mixed crystallizers,” Chem. Eng. Prog. Symp. Ser. No. 110 67, 88–96 (1971).

    CAS  Google Scholar 

  • Angst, W. J., Bourne, J. R. and Sharma, R. N., “Mixing and fast chemical reactions. IV: The dimensions of the reactions zone,” Chem. Eng. Sci. 37, 585–590 (1982a).

    Article  CAS  Google Scholar 

  • Angst, W. J., Bourne, J. R. and Sharma, R. N., “Mixing and fast chemical reactions V: Influence of diffusion with reaction zone on selectivity,” Chem. Eng. Sci. 37, 1259–1264 (1982b).

    Article  CAS  Google Scholar 

  • Apostolopoulos, G. P. and Smith, Jr. W. D., “A new model for micromixing in chemical reactors,” International Symposium on Reaction Engineering—4 (ISCRE4), Heidelberg (April, 1976).

    Google Scholar 

  • Asbjornsen, A. O., “Incomplete mixing simulated by fluid flow network,” AIChE-ICE Symp. Ser. No. 10, 40-49(1965).

    Google Scholar 

  • Askew, W. S. and Beckman, R. B., “Heat and mass transfer in an agitated vessel,” Ind. Eng. Chem. Proc. Des. Dev. 4, 311–318 (1965).

    Article  CAS  Google Scholar 

  • Aubry, C. and Villermaux, J., “Representation du mèlange imparfait de deux courants de réactif dans un réacteur agité continu,” Chem. Eng. Sci. 30, 457–464 (1975).

    Article  CAS  Google Scholar 

  • Baldyga, J. and Bourne, J. R., “Mixing and fast chemical reaction. VIII: Initial deformation of material elements in isotropic homogeneous turbulence,” Chem. Eng. Sci. 39, 329–334 (1984a).

    Article  CAS  Google Scholar 

  • Baldyga, J. and Bourne, J. R., “A fluid mechanical approach to turbulent mixing and chemical reaction. I: Inadequacies of available models,” Chem. Eng. Commun. 28, 231–242 (1984b).

    Article  CAS  Google Scholar 

  • Baldyga, J. and Bourne, J. R., “A fluid mechanical approach to turbulent mixing and chemical reaction. II: Micromixing in the light of turbulence theory,” Chem. Eng. Commun. 28, 243–258 (1984c).

    Article  CAS  Google Scholar 

  • Baldyga, J. and Bourne, J. R., “A fluid mechanical approach to turbulent mixing and chemical reaction. III: Computational and experimental results for the new micromixing model,” Chem. Eng Commun. 28, 259–281 (1984d).

    Article  CAS  Google Scholar 

  • Ballesteros, R. L., Riba, J. P. and Couderc, J. P., “Dissolution of non-spherical particles in solid-liquid fluidization,” Chem. Eng. Sci. 37, 1639–1644 (1982).

    Article  Google Scholar 

  • Bamforth, A. W., Industrial Crystallization, Leonard Hill, London (1965).

    Google Scholar 

  • Barker, J. J. and Treybal, R. E., “Mass transfer coefficients for solids suspended in agitated liquids,” AIChEJ. 6, 289–295 (1960).

    Article  CAS  Google Scholar 

  • Barthole, J. P., David, R. and Villermaux, J., “A new chemical method for the study of local micromixing conditions in industrial stirred tanks,” ACS Symp. Ser. No. 196, 545-554 (1982).

    Google Scholar 

  • Becker, Jr. G. W. and Larson, M. A., “Mixing effects in continuous crystallization,” Chem. Eng. Prog. Symp. Ser. No. 95 65, 14–23 (1969).

    CAS  Google Scholar 

  • Belvi, H., Bourne, J. R. and Rys, P., “Mixing and fast chemical reaction III: Diffusion reaction model for CSTR,” Chem. Eng. Sci., 36, 1649–1654 (1981).

    Article  Google Scholar 

  • Bennett, R. C., “Product size distribution in commercial crystallizers,” Chem. Eng. Prog. 58, 76–80 (1962).

    Google Scholar 

  • Bennett, R. C., Fiedelman, H. and Randolph, A. D., “Crystallizer influenced nucleation,” Chem. Eng. Prog. 69, 86–93 (1973).

    CAS  Google Scholar 

  • Bennett, R. C. and van Buren, M. V, “Commercial urea crystallization,” Chem. Eng. Prog. Symp. Ser. No. 110 67, 44–49 (1969).

    Google Scholar 

  • Bolzern, O. and Bourne, J. R., “Mixing and fast chemical reaction. VI: Extension of the reaction zone,” Chem. Eng. Sci. 38, 999–1003 (1983).

    Article  CAS  Google Scholar 

  • Boon-Long, S., Laguerie, C. and Coudrec, J. P., “Mass transfer from suspended solids to a liquid in agitated vessels,” Chem. Eng. Sci. 33, 813–819 (1978).

    Article  CAS  Google Scholar 

  • Bourne, J. R. and Rohani, S., “Mixing and fast chemical reaction VII: Deforming reaction zone model for the CSTR,” Chem. Eng Sci. 38, 911–916 (1983).

    Article  CAS  Google Scholar 

  • Bransom, S. H., “Continuous crystallizer design,” Chem. Proc. Eng. 46, 647–657 (1965).

    CAS  Google Scholar 

  • Broadfoot, R. and White, E. T., “Performance charts for continuous pans,” Proc. Qld. Soc. Sugar Cane Tech. (1915).

    Google Scholar 

  • Buurmann, C., Resoort, G. and Plaschkes, A., “Scaling-up rules for solids suspension in stirred vessels,” Chem. Eng. Sci. 41, 2865–2871 (1986).

    Article  Google Scholar 

  • Calderbank, P. H. and Jones, S. J. R., “Physical rate processes in industrial fermentation—Part III Mass transfer from fluid to solid particles suspended in mixing vessels,” Trans. Inst. Chem. Eng. 30, 363–368 (1961).

    Google Scholar 

  • Calderbank, P. H. and Moo-Young, M.B., “Continuous phase heat and mass transfer properties of dispersions,” Chem. Eng Sci. 16, 39–54 (1961).

    Article  CAS  Google Scholar 

  • Chai, C. and Valderrama, J. O., “A new approach to view partial segregation model in chemical reactors,” Chem. Eng. Sci. 37, 494–496 (1982).

    Article  CAS  Google Scholar 

  • Chapman, C. M., Nienow, A. W., Cooke, M. and Middleton, J. C., “Particle-gas-liquid mixing in stirred vessels: Particle-liquid mixing,” Chem. Eng. Res. Des. 61, 71–81 (1983).

    CAS  Google Scholar 

  • Chen, M. S. K. and Fan, L. T., “A reversed two-environment model for micromixing in a continuous flow reactor,” Can. J. Chem. Eng. 49, 704–708 (1971).

    Article  CAS  Google Scholar 

  • Chiang, C. L. and Chen, Y. T., “Comments on the shrinking-aggregate two-environment mixing model,” Chem. Eng. Sci. 46, 1879–1880 (1991).

    Article  CAS  Google Scholar 

  • Costa, P. and Trevissoi, C, “Some kinetic and thermodynamic features of reaction between partially segregated fluids,” Chem. Eng. Sci. 27, 653–668 (1972a).

    Article  CAS  Google Scholar 

  • Costa, P. and Trevissoi, C., “Reactions with non-linear kinetics in partially segregated fluids,” Chem. Eng. Sci. 27, 2041–2054 (1972b).

    Article  CAS  Google Scholar 

  • Curl, R. L., “Dispersed-phase mixing.I: Theory and effects in simple reactors,” AIChEJ. 9, 175–181 (1963).

    Article  CAS  Google Scholar 

  • Danckwerts, P. V, “Continuous-flow system: Distribution of residence times,” Chem. Eng. Sci. 2, 1–18(1953).

    Article  CAS  Google Scholar 

  • Danckwerts, P. V, “The effect of incomplete mixing on homogeneous reactions,” Chem. Eng. Sci. 8, 93–102(1958).

    Article  Google Scholar 

  • David, R. and Villermaux, J., “Micromixing effects on complex reactions in a CSTR,” Chem. Eng. Sci. 30, 1309–1313(1975).

    Article  CAS  Google Scholar 

  • Davidson, J. F. and Harrison, D., Fluidization, Academic Press, London (1971).

    Google Scholar 

  • Dohan, L. A. and Weinstein, H., “Generalized recycle reactor model for micromixing,” Ind. Eng. Chem. Fundam. 12, 64–69 (1973).

    Article  CAS  Google Scholar 

  • Dudukovik, M. P., “Micromixing effects on multiple steady states in isothermal chemical reactors,” Chem. Eng. Sci. 32, 985–994 (1977a).

    Article  Google Scholar 

  • Dudukovik, M. P., “On the use of the generalised recycle model to interpret micromixing chemical reactors,” Ind. Eng. Chem. Fundam. 16, 385–388 (1977b).

    Article  Google Scholar 

  • Dwivedi, P. N. and Upadhyay, S. N., “Particle-fluid mass transfer in fixed and fluidized bed,” Ind. Eng. Chem. Proc. Des. Dev. 16, 157–165 (1977).

    Article  CAS  Google Scholar 

  • Evangelista, J. J., Katz, S. and Shinnar, R., “Scale-up criteria for stirred tank reactors,” AIChE J. 15, 843–853 (1969).

    Article  CAS  Google Scholar 

  • Fan, L. T., Tsai, B. I, Erickson, L. E., “Simultaneous effects of macromixing and micromixing on growth processes,” AIChE J. 17, 689–696 (1971).

    Article  CAS  Google Scholar 

  • Farmer, R. W. and Beckman, J. R., “Particle size improvement by a countercurrent tower crystallizer,” AIChE J. 32, 1099–1107 (1986).

    Article  CAS  Google Scholar 

  • Fisher, R. R., Glatz, C. E. and Murphy, P. R., “Effects of mixing during acid addition on fractionally precipitated protein,” Biotechnol. Bioeng. 28, 1056–1063 (1986).

    Article  CAS  Google Scholar 

  • Garside, J. and Tavare, N. S., “Mixing, reaction, and precipitation in an MSMPR crystallizer: Effects of reaction kinetics on the limits of micromixing”, in Jancic, S. J. and de Jong, E. J. (Eds.), Industrial Crystallization 84, Elsevier, Amsterdam, 131–136 (1984).

    Google Scholar 

  • Garside, J. and Tavare, N. S., “Mixing, reaction, and precipitation: Limits of micromixing in an MSMPR crystallizer,” Chem. Eng. Sci. 40, 1485–1493 (1985).

    Article  CAS  Google Scholar 

  • Gillespie, B. B. and Carberry, J. J., “Reactor yield at intermediate mixing levels—An extension of van de Vuss’s analysis,” Chem. Eng. Sci. 21, 472–475 (1966).

    Article  CAS  Google Scholar 

  • Goto, S. and Matsubara, M. A., “A generalised two environment model for micromixing in a continuous flow reactor I: Construction of model.,” Chem. Eng. Sci. 30, 61–70 (1975).

    Article  CAS  Google Scholar 

  • Grootscholten, P. A. M., Solid-Liquid Contacting Industrial Crystallizers and its Influence on Product Distribution, Ph.D. thesis, WTHD 150, Laboratory for Process Equipment, Delft, The Netherlands (1982).

    Google Scholar 

  • Grootscholten, P. A. M., Asselbergs, C. J., Scrutton, A. and de Jong, E. J., “Effect of crystallizer geometry on crystallizer performance”, in Jancic, S. J. and de Jong, E. J. (Eds.), Industrial Crystallization 81, North-Holland, Amsterdam, 189–197 (1982).

    Google Scholar 

  • Grootscholten, P. A. M., de Jong, E. J. and Scrutton, A., “Chemical engineering approach to industrial crystallization”, in Proc. 2nd World Cong. Chem. Eng IV, Montreal, 59-62 (1981).

    Google Scholar 

  • Harriott, P., “Mass transfer to particles: Part I: Suspended in agitated tanks. Part II: Suspended in pipeline,” AIChE J. 8, 93–102 (1962).

    Article  CAS  Google Scholar 

  • Harriott, P., “The growth of ice crystals in a stirred tank,” AIChE J. 13, 755–759 (1967).

    Article  CAS  Google Scholar 

  • Hanley, T. R. and Mischike, R. A., “A mixing model for a continuous stirred tank reactor,” Ind. Eng. Chem. Fundam. 17, 51–58 (1978).

    Article  CAS  Google Scholar 

  • Harnby, N., Edwards, M. F. and Nienow, A. W. (Eds.), Mixing in the Process Industries, Butterworth-Heinemann, Oxford (1992).

    Google Scholar 

  • Harada, M., Arima, K., Eguchi, W. and Nagata, S., “Micromixing in a continuous flow reactor (coalescence and redispersion models)”, in Memoirs of the Faculty of Engineering, Kyoto University, 24,431 (1962).

    CAS  Google Scholar 

  • Harris, I. J. and Srivastava, R. D., “The simulation of single phase turbulent reactor with incomplete reactant mixing,” Can J. Chem. Eng. 46, 66–69 (1968).

    Article  CAS  Google Scholar 

  • Hendl, G. and Mersmann, A. B., “Fluid dynamics and mass transfer in stirred suspensions,” Chem. Eng. Commun. 13, 23–37 (1981).

    Article  Google Scholar 

  • Hill, S., “Residence time distribution in continuous crystallizer,” J. Appl. Chem. 20, 300–304 (1970).

    Article  CAS  Google Scholar 

  • Hinze, J. O., Turbulence, McGraw-Hill, New York (1959).

    Google Scholar 

  • Hsia, M. A. and Tavlarides, L. L., “Simulation analysis of drop breakage, coalescence and micromixing in liquid-liquid stirred tanks,” Chem. Eng. Sci. 26, 189–199 (1983).

    CAS  Google Scholar 

  • Jenson, V. G., “A model for mixing with fast chemical reactions,” Chem. Eng. Sci. 38, 1151–1157 (1983).

    Article  CAS  Google Scholar 

  • Jones, A. J. and Mullin, J. W., “Crystallization kinetics of potassium sulphate in a draft tube agitated vessel,” Trans. I. Chem. Eng 51, 302–308 (1973a).

    CAS  Google Scholar 

  • Jones, A. J. and Mullin, J. W., “The design of a draft tube agitated vessel,” Chem. Ind. 21, April, 387–388 (1973b).

    CAS  Google Scholar 

  • Joshi, J. B., “Solid-liquid fluidized beds: Some design aspects,” Chem. Eng. Res. Des. 61, 143–161 (1983).

    CAS  Google Scholar 

  • Juzaszek, P. and Larson, M. A., “Influence of fines dissolving on crystal size distribution in an MSMPR crystallizer,” AIChE J. 23, 460–468 (1977).

    Article  CAS  Google Scholar 

  • Kafarov, V. V, Ivanov, V. A. and Brodskii, S. Ya., “Recycling in chemical processes,” Int. Chem. Eng. 25,453–473, 617-644 (1985).

    Google Scholar 

  • Kattan, A. and Alder, R. J., “A stochastic model for homogeneous turbulent tubular reactors,” AIChE J. 13, 580–585 (1967).

    Article  Google Scholar 

  • Kattan, A. and Alder, R. J., “A conceptual framework for mixing in continuous chemical reactors,” Chem. Eng. Sci. 27, 1013–1028 (1972).

    Article  CAS  Google Scholar 

  • Keey, R. B. and Glen, J. B., “Mass transfer from fixed and freely suspended particles in an agitated vessel,” AIChE J. 12, 401–403 (1966).

    Article  Google Scholar 

  • Kern, D. Q., Process Heat Transfer, McGraw-Hill, London (1950).

    Google Scholar 

  • Klein, J. P., David, R. and Villermaux, J., “Interpretation of experimental liquid phase micromixing phenomena in a continuous stirred reactor with short residence times,” Ind. Eng. Chem. Fundam. 19, 373–379 (1980).

    Article  CAS  Google Scholar 

  • Knudsen, J. G., “Fouling of heat exchangers: Are we solving the problems?,” Chem. Eng. Prog. 80, 63–69 (1984).

    CAS  Google Scholar 

  • Kneule, F., “Scale-up in the suspension of solids in agitated vessels,” Int. Chem. Eng. 25, 214–222 (1985).

    Google Scholar 

  • Komasawa, I., Moriaka, S., Kuboi, R. and Otake, T., “A method of measurement of interaction rates of dispersed phases in a continuous flow stirred tank,” J. Chem. Eng. Jpn., 4, 319–324 (1971).

    Article  CAS  Google Scholar 

  • Komasawa, I., Sasakura, T. and Otake, T., “Behavior of reacting and coalescing dispersed phase in stirred tank reactor,” J. Chem. Eng. Jpn. 2, 208–211 (1969).

    Article  CAS  Google Scholar 

  • Krause, S., “Fouling of heat transfer surfaces by crystallization and sedimentation,” Int. Chem. Eng. 33, 355–401 (1993).

    Google Scholar 

  • Kunni, D. and Levenspiel, O., Fluidization Engineering, Wiley, New York (1969).

    Google Scholar 

  • Lal, P., Kumar, S., Upadhyay, S. N. and Upadhya, Y. D., “Solid-liquid mass transfer in agitated Newtonian and non-Newtonian fluids,” Ind. Eng. Chem. Res. 27, 1246–1259 (1988).

    Article  CAS  Google Scholar 

  • Larson, M. A. and Mullin, J. W., “Crystallization kinetics of ammonium sulphate,” J. Crystal Growth 20, 183–191 (1973).

    Article  CAS  Google Scholar 

  • Levins, D. M. and Glastonbury, J. R., “Particle-liquid hydrodynamics and mass transfer in a stirred vessel,” Trans. I. Chem. Eng. 50,32–41, 132-146 (1972).

    CAS  Google Scholar 

  • Liekhus, K. J.and Hanley, T. R., “A shrinking-aggregate two-environment mixing model,” Chem. Eng. Sci. 42, 2069–2074 (1987).

    Article  CAS  Google Scholar 

  • Liu, C. H., Zhang, D. H., Sun, C. G. and Shen, Z. Q., “The modelling and simulation of a multistage crystallizer,” Chem. Eng. J. 46, 9–14 (1991).

    Article  CAS  Google Scholar 

  • Margolis, G., Sherwood, T. K., Brian, P. L. T. and Sarofim, A. F., “The performance of a continuous well stirred ice crystallizer,” Ind. Eng. Chem. Fundam. 10, 439–452 (1971).

    Article  Google Scholar 

  • Mao, K. W. and Toor, H. L., “A diffusion model for reactions with turbulent mixing,” AIChE J. 16, 49–52(1970).

    Article  CAS  Google Scholar 

  • Marconi, P. F. and Vatistas, N., “Degree of segregation and coalescence rate parameter in the random coalescence model for a stirred reactor,” AIChE J. 29, 513–516 (1983).

    Article  CAS  Google Scholar 

  • McCabe, W. L., “Crystal growth in aqueous solutions,” Ind. Eng. Chem. 21, 30–33, 112-119 (1929).

    Article  CAS  Google Scholar 

  • McCabe, W. L. and Smith, J. C, Unit Operations of Chemical Engineering, 3rd ed., McGraw-Hill, New York (1976).

    Google Scholar 

  • Mehta, R. V. and Tarbell, J. M., “Four environment models of mixing and chemical reaction. I: Model development,”, AIChE J. 29, 320–329 (1983).

    Article  CAS  Google Scholar 

  • Mehta, R. V. and Tarbell, J. M., “Experimental study of the effect of turbulent mixing on the selectivity of competing reactions,” AIChE J. 33, 1089–1101 (1987).

    Article  CAS  Google Scholar 

  • Mersmann, A. B., Einenkel, W. D. and Kappel, M., “Design and scale-up of mixing equipment,” Int. Chem. Eng. 16, 590–603 (1976).

    Google Scholar 

  • Methot, J. C. and Roy, P. H., “Segregation effects on homogeneous second-order reactions,” Chem. Eng. Sci. 26, 569–576 (1971).

    Article  CAS  Google Scholar 

  • Miller, D. N., “Scale-up of agitated vessels: mass transfer from suspended solute particles,” Ind. Eng. Chem. Proc. Des. Dev. 10, 365–375 (1971).

    Article  CAS  Google Scholar 

  • Misztal, S., Kolek, A. and Koch, R., “Isotopic method for studying the kinetics of crystal growth,” Kristall und Technik 15, 1261–1267 (1980).

    Article  CAS  Google Scholar 

  • Miyawaki, O., Tsujikkawa, H. and Yuraguchi, Y, “Chemical reactions under incomplete mixing,” J. Chem. Eng. Jpn., 8, 63–68 (1975).

    Article  CAS  Google Scholar 

  • Mullin, J. W. and Garside, J., “Voidage-velocity relationships in the design of suspended-bed crystallizers,” Br. Chem. Eng. 15, 773–775 (1970).

    CAS  Google Scholar 

  • Nabholz, F., Ott, R. J. and Rys, P., “Mixing-disguised chemical selectivity,” in Proc. 2nd Eur. Conf. Mixing 1977, Paper B2, British Hydromechanical Research Association (BHRA), Cranfield, England, B2-B27 (1977).

    Google Scholar 

  • Nauman, E. B., “The droplet diffusion model for micromixing,” Chem. Eng. Sci., 30, 1135–1140 (1975).

    Article  CAS  Google Scholar 

  • Nauman, E.B., “Residence time distributions and micromixing”, Chem. Eng. Commun. 8, 53–131 (1981).

    Article  Google Scholar 

  • Nauman, E. B. and Buffham, B. A., Mixing in Continuous Flow Systems, Wiley, New York (1983).

    Google Scholar 

  • Ng, D. Y. C and Rippin, D. W. T., “The effect of incomplete mixing on conversion in homogeneous reactions,” in Proc. 3rd Eur. Symp. Chem. React. Eng., Amsterdam, Sept. 1964, Pergamon, Oxford 161–165 (1965).

    Google Scholar 

  • Nienow, A. W., “Suspension of solid particles in turbine agitated baffled vessels,” Chem. Eng. Sci. 23, 1453–1459(1968).

    Article  CAS  Google Scholar 

  • Nienow, A. W. and Miles, D., “The effect of impeller, tank configuration on fluid particle mass transfer,” Chem. Eng. J. 15, 13–24 (1978).

    Article  CAS  Google Scholar 

  • Nishimura, Y and Matsubara, M., “Micromixing theory via the two environment model,” Chem. Eng. Sci. 25, 1785–1797(1970).

    Article  CAS  Google Scholar 

  • Nyvlt, J., Industrial Crystallization from Solutions, Butterworths, London(1971).

    Google Scholar 

  • Nyvlt, J., Design of Crystallizers, CRC, Boca Raton, Florida (1992).

    Google Scholar 

  • Nyvlt, J. and Broul, M., “Crystallization using recycle of mother liquor,” Int. Chem. Eng. 19, 547–552(1979).

    Google Scholar 

  • Nyvlt, J., Moundry, F. and Veverka, V., “Mathematical models of a cascade of ideally agitated crystallizer,” Coll. Czech. Chem. Commun. 38, 1815–1839 (1973).

    Article  CAS  Google Scholar 

  • Nyvlt, J. and Provaznik, L., “Optimization of multichamber crystallizer,” Coll. Czech. Chem. Commun. 44, 1239–1245(1979).

    Article  CAS  Google Scholar 

  • Nyvlt, J., Skrivanek, J. and Moudry, F., “Series of crystallizers with nucleation in all members. A real crystallizer,” Coll. Czech. Chem. Commun. 30, 1759–1770 (1965).

    CAS  Google Scholar 

  • Oldshue, J. Y, Fluid Mixing Technology, McGraw-Hill, New York (1983).

    Google Scholar 

  • Ottino, J. M., “Lamellar mixing models for structured chemical reactions and their relationship to statistical models: Macromixing and micromixing and the problems of averages,” Chem. Eng. Sci. 35, 1377–1391 (1980).

    Article  CAS  Google Scholar 

  • Ottino, J. M. and Chella, R., “Modelling of rapidly-mixed fast-crosslinking exothermic polymerization,” AIChEJ. 29, 373–382 (1983).

    Article  Google Scholar 

  • Ottino, J. M. and Chella, R., “Conversions and selectivity modifications due to mixing in unpremixed reactors,” Chem. Eng. Sci. 39, 551–567 (1984).

    Article  Google Scholar 

  • Ottino, J. M, Ranz, W. E. and Macosko, C. W., “A lamellar model for the analysis of liquid-liquid mixing,” Chem. Eng. Sci. 34, 877–890 (1979).

    Article  CAS  Google Scholar 

  • Ou, J. C, Lee, C. S. and Chen, S. H., “Mixing of chemically reactive fluid by swirling in a tubular reactor,” Chem. Eng. Sci. 38, 1323–1329 (1983a).

    Article  CAS  Google Scholar 

  • Ou, J. C, Lee, C. S. and Chen, S. H., “Mixing and chemical reactions: Chemical selectivity,” Chem. Eng. Sci. 38, 1015–1019 (1983b).

    Article  CAS  Google Scholar 

  • Ou, J. C, Lee, C. S. and Chen, S. H., “Mixing and chemical reactions: Thermal effects,” Chem. Eng. Sci. 39 1735–1739(1984).

    Article  CAS  Google Scholar 

  • Ou, J. C, Lee, C. S. and Chen, S. H., “Mixing induced by flow geometry: Spatial distribution and time evolution of the measures of mechanical mixedness,” Chem. Eng. Sci. 40, 2225–2232 (1985).

    Article  CAS  Google Scholar 

  • Ou, J. J. and Ranz, W. E., “Mixing and chemical reactions: A comparison between fast and slow reactions,” Chem. Eng. Sci. 38, 1005–1013 (1983a).

    Article  CAS  Google Scholar 

  • Ou, J. J. and Ranz, W. E., “Mixing and chemical reactions: Chemical selectivities,” Chem. Eng. Sci. 38 1015–1019 (1983b).

    Article  CAS  Google Scholar 

  • Ou, J. J. and Ranz, W. E., “Mixing and chemical reactions: Thermal effects,” Chem. Eng. Sci. 39, 1735–1739(1984).

    Article  CAS  Google Scholar 

  • Plasari, E., David, R. and Villermaux, J., “Micromixing phenomena in continuous stirred reactors using a Michaelis-Menten reaction in the liquid phase,” ACS Symp. Ser. No. 65, 126-139 (1978).

    Google Scholar 

  • Pohorecki, R. and Baldyga, J., “New model of micromixing in chemical reactors 1: General development and application to a tubular reactor,” Ind. Eng. Chem. Fundam. 22, 393–405 (1983a).

    Google Scholar 

  • Pohorecki, R. and Baldyga, J., “New model of micromixing in chemical reactors 2: Application to a stirred tank reactors,” Ind. Eng. Chem. Fundam. 22, 405–410 (1983b).

    Article  Google Scholar 

  • Pohorecki, R. and Baldyga, J., “The use of a new model of micromixing for determination of crystal size in precipitation,” Chem. Eng. Sci. 38, 77–83 (1983c).

    Google Scholar 

  • Pudjiono, P. I., Protein Precipitation in a Couette Flow Device, Ph. D. thesis, University of Manchester, Manchester (1992).

    Google Scholar 

  • Pudjiono, P. I., Tavare, N. S., Garside, J. and Nigam, K. D. P., “Residence time distribution from a continuous Couette flow device,” Chem. Eng. J. 48, 101–110 (1992).

    Article  CAS  Google Scholar 

  • Pudjiono, P.I. and Tavare, N. S., “Residence time distribution analysis from a continuous Couette flow device around critical Taylor number,” Can. J. Chem. Eng. 71, 312–318 (1993).

    Article  CAS  Google Scholar 

  • Ramshaw, C. and Parker, I., “Crystallizer design model of steady state operation,” Trans. I. Chem. Eng. 51, 82–92 (1973).

    Google Scholar 

  • Randolph, A. D., Size Distribution Dynamics in a Mixed Suspension, Ph. D. thesis, Iowa State University, Ames (1962).

    Google Scholar 

  • Randolph, A. D., “The mixed suspension, mixed product removal crystallizer as a concept in crystal — lizer design,” AIChE J. 11, 424–430 (1965).

    Article  CAS  Google Scholar 

  • Randolph, A. D., Deepak, C. and Iskander, M., “On the narrowing of particle size distributions in staged vessels with classified product removal,” AIChEJ. 14, 827–830 (1968).

    Article  Google Scholar 

  • Randolph, A. D. and Larson, M. A., Theory of Paniculate Processes, Academic, New York (1971).

    Google Scholar 

  • Randolph, A. D. and Rivera, T., “A model for the precipitation of pentaerythritol tetranitrate (PETN),” Ind. Eng. Chem. Process Des. Dev. 17, 182–188 (1978).

    Article  Google Scholar 

  • Randolph, A. D. and Tan, C, “Numerical design techniques for staged classified recycled crystallizer,” Ind. Eng. Chem. Process Des. Dev. 17, 189–200 (1978).

    Article  CAS  Google Scholar 

  • Randolph, A. D. and White E. T., “Modelling size dispersion in the prediction of crystal size distribution,” Chem. Eng. Sci. 32, 1067–1076 (1977).

    Article  CAS  Google Scholar 

  • Ranz, W. E., “Applications of a stretch model to mixing, diffusion and reaction in laminar turbulent flows,” AlChEJ. 25, 41–47 (1979).

    Article  CAS  Google Scholar 

  • Rao, D. P. and Dunn, I. J., “A Monte Carlo coalescence model for reaction with dispersion in a tubular reactor,” Chem. Eng. Sci. 25, 1275–1282 (1970).

    Article  CAS  Google Scholar 

  • Rao, D. P and Edwards, L. L., “On the diffusion model of Mao and Toor,” AIChE J. 17, 1264–1265 (1971).

    Article  CAS  Google Scholar 

  • Rice, A. W., Toor, H. L. and Manning, F. S., “Scale of mixing in a stirred vessel,” AIChE J. 10, 125–129(1964).

    Article  CAS  Google Scholar 

  • Ring, T. A., “Continuous precipitation of monosized particles with a packed bed crystallizer,” Chem. Eng. Sci. 39, 1731–1734 (1984).

    Article  CAS  Google Scholar 

  • Rippin, D. W. T., “Segregation in two environment models of a partially mixed continuous reactor,” Chem. Eng. Sci. 22, 247–251 (1967a).

    Article  CAS  Google Scholar 

  • Rippin, D. W. T., “The recycle reactor as a model of incomplete mixing,” Ind. Eng. Chem. Fundam. 6, 488–492 (1967b).

    Article  CAS  Google Scholar 

  • Ritchie, B. W., “Simulating the effect of mixing on the performance of unpremixed chemical flow reactor,” Can. J. Chem. Eng. 58, 626–633 (1980).

    Article  CAS  Google Scholar 

  • Ritchie, B. W. and Togby, A. H., “General population balance modelling of unpremixed feed stream chemical reactors: A review,” Chem. Eng. Commun. 2, 249–264 (1978).

    Article  CAS  Google Scholar 

  • Ritchie, B. W. and Togby, A. H., “A three-environment micromixing model for chemical reactors with arbitrary separate feed streams,” Chem. Eng. J. 17, 173–182 (1979).

    CAS  Google Scholar 

  • Roberts, J. E. and Robinson, J. N., “A mathematical study of crystal growth in a cascade of agitators,” Can. J. Chem. Eng. 35, 105–112 (1957).

    Article  Google Scholar 

  • Rojkowski, Z., “Crystal size distribution from a cascade of mixed tanks,” Kristall und Technik 12, 1121–1138(1977).

    Article  CAS  Google Scholar 

  • Rowe, P. N. and Claxton, K. T., “Heat and mass transfer from a single sphere to fluid flowing through an array,” Trans. I. Chem. Eng. 43, 321–331 (1965).

    Google Scholar 

  • Schwartzberg, H. G. and Treybal, R. E., “Fluid and particle motion in turbulent stirred tanks,” Ind. Eng. Chem. Fundam. 7, 1–12 (1968).

    Article  CAS  Google Scholar 

  • Shah, Y. T., Gas-Liquid-Solid Reactor Design, McGraw-Hill, New York (1979).

    Google Scholar 

  • Shain, S. A., “Performance of stirred reactors with dispersed phase mixing,” AIChE J. 12, 806–809 (1961).

    Article  Google Scholar 

  • Shiloh, K., Sideman, S. and Resnick, W., “Crystallization in a dispersed phase,” Can. J. Chem. Eng. 53, 137–163 (1975).

    Article  Google Scholar 

  • Shmidt, L. and Shmidt, J., “Mechanism of crystallization in agitated solutions,” Chem. Eng. Commun. 36, 233–250 (1985).

    Article  CAS  Google Scholar 

  • Skrivanek, J. F., Moundry, F. and Nyvlt, J., “Uber kristallisation XX: Verteilungder teilchengrossen in einem realen kristallisar,” Coll. Czech. Chem. Commun. 32, 480–488 (1967).

    Article  CAS  Google Scholar 

  • Skrivanek, J. and Vacek, V., “Crystallisation in a cascade of ideally stirred vessels. Analytical description of moments of distribution function of particle sizes of the crystalline suspension,” Coll. Czech. Chem. Commun. 42, 3144–3149 (1977).

    Article  CAS  Google Scholar 

  • Spielman, L. A. and Levenspiel, O., “A Monte-Carlo treatment for reacting and coalescing dispersed phase system,” Chem. Eng. Sci. 20, 247–254 (1965).

    Article  CAS  Google Scholar 

  • Sykes, P. and Gomezplata, A., “Particle-liquid mass transfer in stirred tanks,” Can. J. Chem. Eng. 45, 189–196(1967).

    Article  CAS  Google Scholar 

  • Szabo, T. T. and Nauman, E. B., “Copolymerization and terpolymerization in continuous nonideal reactors,” AIChE J. 15, 575–584 (1969).

    Article  CAS  Google Scholar 

  • Takao, M. and Murakami, Y, “Evaluation of intensity of segregation of two environment model for micromixing,” J. Chem. Eng. Jpn. 9, 336–338 (1976).

    Article  Google Scholar 

  • Tavare, N. S., “Growth rate dispersion,” Can. J Chem. Eng. 63, 436–442 (1985).

    Article  CAS  Google Scholar 

  • Tavare, N. S., “Mixing in continuous crystallizers,” AlChE J. 32, 705–732 (1986).

    Article  CAS  Google Scholar 

  • Tavare, N. S., “Micromixing limits in an MSMPR crystallizer,” Chem. Eng. Technol. 12, 1–12 (1989).

    Article  CAS  Google Scholar 

  • Tavare, N. S., “Mixing, reaction and precipitation: Environment mixing models in continuous crystal — lizers-I. Premixed feeds,” Computers Chem. Eng. 16, 923–936 (1992).

    Article  CAS  Google Scholar 

  • Tavare, N. S. and Chivate, M. R., “CSD analysis from a single stage and two stage cascade of MSCPR crystallizer,” Can. J. Chem. Eng. 56, 758–761 (1978).

    Article  Google Scholar 

  • Tavare, N. S. and Chivate, M. R., “Growth and dissolution kinetics of potassium sulphate crystallized in a fluidized bed crystallizer,” Trans. I. Chem. Eng. 57, 35–42 (1979).

    CAS  Google Scholar 

  • Tavare, N. S. and Chivate, M. R., “CSD analysis from a single stage and two stage cascade of MSMPR crystallizer,” Indian Chem. Eng. 24, T27–T33 (1982).

    Google Scholar 

  • Tavare, N. S., Garside, J. and Larson, M. A., “CSD analysis from a cascade of MSMPR crystallizers with recycle,” Chem. Eng. Commun. 47, 185–199 (1986).

    Article  CAS  Google Scholar 

  • Terwilinger, J. P. and Wey, J. S., “Design considerations for a multistage cascade crystallizer,” Ind. Eng. Chem. Process Des. Dev. 15, 467–469 (1976).

    Article  Google Scholar 

  • Treleaven, C. R. and Togby, A. H., “Conversion in reactors having separate reactant feed streams. The state of maximum mixedness,” Chem. Eng. Sci. 26, 1259–1269 (1971).

    Article  CAS  Google Scholar 

  • Treleaven, C. R. and Togby, A. H., “Monte Carlo methods for simulating micromixing in chemical reactors,” Chem. Eng. Sci. 27, 1497–1513 (1972).

    Article  CAS  Google Scholar 

  • Troung, K. T. and Methot, J. C., “Segregation effects on consecutive reaction in CSTR,” Can. J. Chem. Eng. 54, 572–577 (1976).

    Google Scholar 

  • Tsai, B. I., Fan, L. T., Erickson, L. E. and Chen, S. K., “The reversed two environment model of micromixing and growth processes,” J. Appl. Chem. Biotechnol 21, 307–312 (1971).

    Article  CAS  Google Scholar 

  • Tournie, P., Laguerie, C. and Couderc, J. P., “Correlation for mass transfer between fluidized spheres and a liquid,” Chem. Eng. Sci. 34, 1247–1255 (1979).

    Article  CAS  Google Scholar 

  • Uhl, V. W. and Gray, J. B., Mixing: Theory and Practice, Academic, London (1966).

    Google Scholar 

  • Valderrama, J. O. and Gordon, A. L., “Mixing effects on homogeneous p-order reactions. A two parameter model for partial segregation,” Chem. Eng. Sci. 34, 1097–1103 (1979).

    Article  CAS  Google Scholar 

  • Valderrama, J. O. and Gordon, A. L., “A two parameter model for partial segregation: Application to flow reactors with pre-and unpremixed feed,” Chem. Eng. Sci. 36, 839–844 (1981).

    Article  CAS  Google Scholar 

  • Van’t Land, C. M. and Wienk, B. G., “Control of particle size in industrial NaCl crystallization”, in Mullin, J. W. (Ed.), Industrial Crystallization, Plenum, New York, 51–60 (1975).

    Google Scholar 

  • Villermaux, J., “Drop break-up and coalescence. Micromixing effects in liquid-liquid reactors,” in Rodrigues, A. E., Calo, J. M. and Sweed, N. H. (Eds.), Multiphase Chemical Reactors, Vol. I Fundamentals, NATO Advanced Study Institute Ser. No. 51, Sijthoff and Noordhoff, 285-362(1981).

    Google Scholar 

  • Villermaux, J., “Mixing in chemical reactors,” ACS Symp. Ser. No. 226, 135-186 (1983).

    Google Scholar 

  • Villermaux, J., “Micromixing phenomena in stirred reactors,” in Encyclopedia of Fluid Mechanics, Gulf Publishing Co., Houston, Texas, 707–771 (1986).

    Google Scholar 

  • Villermaux, J. and David, R., “Recent advances in the understanding of micromixing phenomena in stirred reactors,” Chem. Eng. Commun. 21, 105–122 (1983).

    Article  CAS  Google Scholar 

  • Villermaux, J. and Zoulalian, A., “Etat de mélange du fluide dans un réacteur continu. A propos d’un modàle de Weinstein et Aider,” Chem. Eng. Sci. 24, 1513–1517 (1969).

    Article  CAS  Google Scholar 

  • Weinstein, H. J. and Aider, R. J., “Micromixing effects in continuous chemical reactors,” Chem. Eng. Sci. 22, 65–75(1967).

    Article  CAS  Google Scholar 

  • Wen, C. Y and Fan, L. T., Models for Flow Systems and Chemical Reactors, Marcel Dekker, New York (1975).

    Google Scholar 

  • Weng, H. S., “Residence time distribution model for continuous crystallizer,” J. Chem. Eng. Jpn. 13, 407–409(1980).

    Article  CAS  Google Scholar 

  • Winter, B. and Georgi, H., “An extended crystallizer model for the sizing and optimization of crystallizer cascades,” Int. Chem. Eng. 25, 611–616(1985).

    Google Scholar 

  • Wolff, P. R. and Larson, M. A., “Crystal size distribution from multistage crystallizers,” Chem. Eng. Prog. Symp. Sen No. 110 67, 97–107 (1971).

    Google Scholar 

  • Zeitlin, M. A. and Tavlarides, L. L., “Fluid-fluid interactions and hydrodynamics in agitated dispersion,” Can. J. Chem. Eng. 50, 207–215 (1972).

    Article  CAS  Google Scholar 

  • Zoulalian, A. and Villermaux, J., “Influence of chemical parameters on micromixing in a continuous stirred tank reactor,” Adv. Chem. Sen Am. Chem. Soc. 133, 348–361 (1974).

    Article  CAS  Google Scholar 

  • Zwietering, T. N., “The degree of mixing in continuous flow systems,” Chem. Eng. Sci. 11, 1–15 (1959).

    Article  CAS  Google Scholar 

  • Zwietering, T. N., “Suspending of solid particles in liquid by agitators,” Chem. Eng. Sci. 8, 244–253(1958).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tavare, N.S. (1995). Mixing. In: Industrial Crystallization. The Springer Chemical Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0233-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0233-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0235-1

  • Online ISBN: 978-1-4899-0233-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics