Electrolytic Reactor Design, Selection, and Scale-up

  • F. Goodridge
  • K. Scott


We mentioned in Section 1.3 some important industrial applications of electrolysis—in the chloralkali industry, metal winning and refining, and organic electrosynthesis. As indicated in Section 1.2, we do not intend to describe electrochemical processes in detail, since there are many books on electrochemical technology.’ We will discuss the design of individual reactors, with emphasis on modularized, general purpose flow electrolyzers. We will classify reactors by their mode of operation.


Mass Transfer Coefficient Current Distribution Mass Transfer Rate Reactor Design Electrolyte Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pletcher, D. and Walsh, F. C., 1990, Industrial Electrochemistry“, 2d ed., Chapman & Hall, New York.Google Scholar
  2. 2.
    Blackmar, G. E., U.S. Patent no. 3,573, 178 (1971).Google Scholar
  3. 3.
    Fleet, B. and Gupta, S. D., 1976, Novel electrochemical reactor, Nature (London), 263: 5573, 122–123.CrossRefGoogle Scholar
  4. 4.
    Backhurst, J. R., Coulson, J. M., Goodridge, F., Plimley, R. E., and Fleischmann, M., 1969, “A Preliminary investigation of fluidised bed electrodes”, J. Electrochem. Soc., 116: 1600–1607 (1969).CrossRefGoogle Scholar
  5. 5.
    Goodridge, F. and Wright, A. R., 1983, “Porous flow-through and fluidised bed electrodes,” in Comprehensive Treatise of Electrochemistry, Vol. 6, ( E. Yeager, J. O’M. Bockris, and S. Sarangapany, eds.) Plenum Press, pp. 393–443.Google Scholar
  6. 6.
    Hughes, D., 1988, “The dished electrode membrane cell facilitates wide range of syntheses,” Spec. Chem., 8: 16, 17.Google Scholar
  7. 7.
    Carlsson, L., Holmberg, H., Johansson, B., and Nilsson, A., 1982, “Design of a multipurpose modularised electrochemical cell,” in Techniques of Electroorganic Synthesis, III, ( N. L. Weinberg and B. V. Tilak, eds.), John Wiley & Sons, New York, pp. 179–194.Google Scholar
  8. Brooks, W. N. 1986, “The ICI (Mond) FM21 cell as a multipurpose electrolyser, Instit. Chem. Eng. Symp. Ser., Electrochemical Engineering,98: 1–12, 320–321.Google Scholar
  9. 9.
    Degner, D., 1982, “Scale-up of electroorganic processes: Some examples for a comparison of electrochemical syntheses with conventional syntheses,” in Weinberg and Tilak, eds., p. 256.Google Scholar
  10. 10.
    Jansson, R. E. W., Marshall, R. J., and Rizzo, J. E., 1978, “The rotating electrolyser. I: The velocity field,” J. Appl. Electrochem. 8: 281–285; R. E. W. Jansson and R. J. Marshall, “The rotating electrolyser II: Transport properties and design equations,” J. Appl. Electrochem., 287–291.Google Scholar
  11. 11.
    Udupa, H. V. K. and Udupa, K. S., 1982, “Use of rotating electrodes for small-scale electroorganic processes,” in Weinberg and Tilak, eds., pp. 385–422.Google Scholar
  12. 12.
    Holland, F. S., 1978, “The development of the Eco-Cell Process,” Chem. Ind. (London) 7: 453–458.Google Scholar
  13. 13.
    Robertson, P. M., Berg, P., Reimann, H., Schleich, K., and Seiler, P., 1983, “Application of the Swiss-Roll Cell in vitamin-C production,” J. Electrochem. Soc. 130: 591–596.CrossRefGoogle Scholar
  14. 14.
    Robertson, P. M., Cettou, P., Matic, D., Schwager, F., Storck, A., and Ibl, N., 1979, “Electrosynthesis with the Swiss-Roll Cell. Properties of the cell components and their selection for electrosynthesis,” Am. Instit. Chem. Eng. Symp. Ser. Electroorganic Synthesis Technology, 75: 115–124.Google Scholar
  15. 15.
    Oloman, C., 1979, “Trickle bed electrochemical reactors,” J. Electrochem. Soc., 126: 1885–1892.CrossRefGoogle Scholar
  16. 16.
    Goodridge, F., Harrison, S., and Plimley, R. E., 1986, “The electrochemical production of propylene oxide,” J. Electroanal. Chem. Interfacial Electrochem., 214: 283–293.CrossRefGoogle Scholar
  17. 17.
    Feess, H. and Wendt, H., 1982, “Performance of two-phase-electrolyte electrolysis,” in Weinberg and Tilak, eds., pp. 81–177.Google Scholar
  18. 18.
    Dafana, R., 1987, The Design and Performance of a Novel Electropulse Column, Ph.D. dissertation, University of Newcastle upon Tyne, U.K.Google Scholar
  19. 19.
    MacMullin, R. B., 1963, “The problem of scale-up in electrolytic processes,” Electrochem. Technol., 1: 5–17.Google Scholar
  20. 20.
    Coulson, J. M. and Richardson, J. F., Chemical Engineering,Vol. 1, 4th ed., Pergamon Press, pp. 9–15.Google Scholar
  21. 21.
    Johnstone, R. E. and Thring, M. W., 1967, Pilot Plants, Models and Scale-up Methods in Chemical Engineering, McGraw-Hill, New York.Google Scholar
  22. 22.
    Johnstone and Thring, p. 80.Google Scholar
  23. 23.
    Damkohler, G., 1936, “The influence of flow, diffusion and heat transfer on the performance of reaction furnaces. I. General considerations of the transfer of chemical processes from small to large size equipment,” Z. Elektrochem., 42: 846–862.Google Scholar
  24. 24.
    Johnstone and Thring, p. 90.Google Scholar
  25. 25.
    Wragg, A. A., Tagg, D. J., and Patrick, M. A., 1980, “Diffusion controlled current distributions near cell entries and corners,” J. Appl. Electrochem., 10: 43–47.CrossRefGoogle Scholar
  26. 26.
    Goodridge, F., Mamoor, G. M., and Plimley, R. E., 1986, “Mass transfer rates in baffled electrochemical cells,” Inst. Chem. Eng., Symp. Ser., 98: pp. 61–71.Google Scholar
  27. 27.
    Hine, F., 1985, Electrode Processes and Electrochemical Engineering, Plenum Press, New York, p. 313.CrossRefGoogle Scholar
  28. 28.
    Parrish, W. R. and Newman, J., 1969, “Current distribution on a plane electrode below the limiting current,” J. Electrochem. Soc., 116: 169–172.CrossRefGoogle Scholar
  29. 29.
    Parrish, W. R. and Newman, J., 1970, “Current distribution on plane parallel electrodes in channel flow,” J. Electrochem. Soc., 117: 43–48.CrossRefGoogle Scholar
  30. 30.
    Pickett, D. J., Electrochemical Reactor Design,2d ed., Elsevier Scientific Publishing, New York, p. 114.Google Scholar
  31. 31.
    Ibl, N., 1983, “Current Distribution,” in Comprehensive Treatise of Electrochemistry, Vol. 6, ( E. Yeager, J. O’M. Bockris, and S. Sarangapany, eds.) Plenum Press, New York, pp. 239–315.Google Scholar
  32. 32.
    Wagner, C., 1951, “Theoretical analysis of the current distribution in electrolytic cells,” J. Electrochem. Soc., 98: 116–128.CrossRefGoogle Scholar
  33. 33.
    Viswanathan, K., and Chin, D. T., 1977, “Current distribution on a continuous moving sheet electrode,” J. Electrochem. Soc., 124: 709–713.CrossRefGoogle Scholar
  34. 34.
    Lapicque, F. and Storck, A., 1985, “Modelling of a continuous parallel plate plug flow electrochemical reactor: Electrowinning of copper,” J. Appl. Electrochem., 15: 925–935.CrossRefGoogle Scholar
  35. 35.
    De La Rue, R. E. and Tobias, C., 1959, “On the conductivity of dispersions,” J. Electrochem. Soc., 106: 827–833.CrossRefGoogle Scholar
  36. 36.
    Tobias, C. W., 1959, “Effect of gas evolution on current distribution and ohmic resistance in electrolysers,” J. Electrochem. Soc., 106: 833–838.CrossRefGoogle Scholar
  37. 37.
    Hine, p. 89.Google Scholar
  38. 38.
    Nishiki, Y., Aoki, K., Tokuda, K., and Matsuda, H., 1986, “Effect of gas evolution on current distribution and ohmic resistance in a vertical cell under forced convection conditions,” J. Appl. Electrochem., 16: 615–625.CrossRefGoogle Scholar
  39. 39.
    Pickett, p. 347.Google Scholar
  40. 40.
    Tobias, C. W. and Wijsman, R., 1953, “Theory of the effect of electrode resistance on current density distribution in electrolytic cells,” J. Electrochem. Soc., 100: 459–467.CrossRefGoogle Scholar
  41. 41.
    Hine, p. 329.Google Scholar
  42. 42.
    Goodridge, F. and Hamilton, M. A., 1980, “The behaviour of a fixed bed porous flow-through electrode during the production of p-amino phenol,” Electrochim. Acta, 25: 481–486.CrossRefGoogle Scholar
  43. 43.
    Goodridge, F., Plimley, R. E., and Leetham, R. P., (1985) Purifying Mixed-Cation Electrolyte, Eur. Pat. Appt EP 197, 769.Google Scholar
  44. 44.
    Scott, K. and Lui, W. K., 1986, “The performance of a moving bed electrode during the electrowinning of cobalt,” Inst. Chem. Eng., Symp. Ser., 98: 143–154.Google Scholar
  45. 45.
    Scott, K., 1982, “The effectiveness of particulate bed electrodes under activation control,” Electrochim. Acta, 27: 447–451.CrossRefGoogle Scholar
  46. 46.
    Weise, L., Giron, M., Valentin, G., and Storck, A., “A chemical engineering approach to selectivity analysis in electrochemical reactors,” Inst. Chem. Eng., Symp. Ser., 98: 49–59.Google Scholar
  47. 47.
    Storck, A., Enriques-Granados, M., and Roger, M., 1982, “The behaviour of porous electrodes in a flow-by regime. I. Theoretical study,” Electrochim. Acta, 27: 293–301.CrossRefGoogle Scholar
  48. 48.
    Pickett, pp. 362–388.Google Scholar
  49. 49.
    Scott, K., 1986, “Electrolytic reduction of oxalic acid to glyoxylic acid: A problem of electrode deactivations,” Chem. Eng. Res. and Des., 64: 266–271.Google Scholar
  50. 50.
    Michelet, D., 1974, “Glyoxylic acid,” Ger. Offen., 2, 359, 863.Google Scholar
  51. 51.
    Pletcher, D., and Razaq, M., 1981, “The reduction of acetophenone to ethylbenzene at a platinised platinum electrode,” Electrochim. Acta, 26: 819–824.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • F. Goodridge
    • 1
  • K. Scott
    • 1
  1. 1.University of Newcastle upon TyneNewcastle upon TyneEngland

Personalised recommendations