Aspects of Mass and Heat Transfer and the Energetics of Electrolytic Cell Systems

  • F. Goodridge
  • K. Scott

Abstract

As will be shown in Chapter 3, formation of a reaction model depends on knowing the rate at which reactants arrive at the electrode surface from the bulk of the electrolyte and the rate at which the products formed by reactions disappear back into the bulk of the electrolyte, i.e., mass transfer or the synonymous term mass transport. Since mass transfer is conditioned by the hydrodynamic behavior of the electrolyte, we begin by considering basic aspects of fluid dynamics; for further study the reader is referred to a standard text on the subject.1 Our treatment of mass transfer is simplistic, but will nevertheless allow the reader to understand and use relevant mass transfer relationships.

Keywords

Heat Transfer Mass Transfer Coefficient Mass Transfer Rate Axial Flow Rotate Disk Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sharpe, G. J., 1967, Fluid Flow Analysis,Heinemann.Google Scholar
  2. 2.
    Treybal, R. E., 1980, Mass Transfer Operations, McGraw-Hill, New York, p. 107.Google Scholar
  3. 3.
    Crank, J., 1956, The Mathematics of Diffusion,Oxford University Press, p. 2.Google Scholar
  4. 4.
    Treybal, p. 68.Google Scholar
  5. 5.
    Sharpe, p. 262.Google Scholar
  6. 6.
    Rousar, I., Micka, K., and Kimla, A., 1986, Electrochemical Engineering I, Elsevier Scientific Publishing Co., New York, parts A-C, p. 27.Google Scholar
  7. 7.
    Pickett, D. J., 1979, Electrochemical Reactor Design, Elsevier Scientific Publishing Co., New York, p. 121.Google Scholar
  8. 8.
    Pickett, p. 131.Google Scholar
  9. 9.
    Coulson, J. M., and Richardson, J. F., 1977, Chemical Engineering,Vol. 1, Pergamon Press, p. 300.Google Scholar
  10. 10.
    Ross, T. K., and Wragg, A. A., 1965, `Electrochemical mass transfer studies in annuli,“ Electrochim. Acta, 10: 1093–1106.CrossRefGoogle Scholar
  11. 11.
    Taylor, G. I., 1923, “Stability of a viscous liquid contained between two cylinders,” Philos. Trans. R. S. London, A223: 289–343.CrossRefGoogle Scholar
  12. 12.
    Schlichting, H., 1968, Boundary Layer Theory, McGraw-Hill (1968).Google Scholar
  13. 13.
    Eisenberg, M., Tobias, C. W., and Wilke, C. R., 1954, “Ionic mass transfer and concentration polarisation at rotating electrodes,” J. Electrochem. Soc., 101: 306–320.CrossRefGoogle Scholar
  14. 14.
    Barz, R., Bernstein, C., and Vielstich, W., “On the investigation of electrochemical reactions by the application of turbulent hydrodynamics,” in Advances in Electrochemistry and Electrochemical Engineering, Vol. 13 (H. Gerischer and C. W. Tobias, eds.), John Wiley and Sons, New York, pp. 261–353.Google Scholar
  15. 15.
    Rousar et al. p. 265.Google Scholar
  16. 16.
    Fahidy, T. Z., 1985, Principles of Electrochemical Reactor Analysis, Elsevier Scientific Publishing Co., New York, p. 81.Google Scholar
  17. 17.
    Wragg, T., 1977, “Applications of limiting diffusion current technique in chemical engineering,” Chem. Eng., 39–44, 49.Google Scholar
  18. 18.
    Goodridge, F., Pearse, B., Plimley, R. E., and Taama, W. M., unpublished.Google Scholar
  19. 19.
    Youn, J. H., 1988, Mass Transfer Studies for the Design of a Thin-Gap Electrolytic Cell, Ph.D. Thesis, University of Newcastle upon Tyne, U.K.Google Scholar
  20. 20.
    Letord-Quemere, M. M., Coeuret, F., and Legrand, J., 1988, “Mass transfer at the wall of a thin channel containing an expanded turbulence promoting structure,” J. Electrochem. Soc., 135: 3063–3067.CrossRefGoogle Scholar
  21. 21.
    Carlson, L., Sandegren, B., and Simonsson, D., 1983, “Design and performance of a modular, multi-purpose electrochemical reactor,” J. Electrochem. Soc., 130: 342–346.CrossRefGoogle Scholar
  22. 22.
    Goodridge, F., Mamour, G. M., and Plimley, R. E., 1986, “Mass transfer rates in baffled electrolytic cells,” Int. Chem. Eng. Symp. Ser. 98: 61–71.Google Scholar
  23. 23.
    Robertson, P. M., Schwager, F., and Ibl, N., 1975, “A new cell for electrochemical processes,” J. Electroanal. Chem., 65: 883–900.CrossRefGoogle Scholar
  24. 24.
    Lopez-Cacicedo, C. L., 1975 “Recovery of metals from rinse waters in chemelec electrolytic cells,” Trans. Inst. Met. Finish., 55: 74–77.Google Scholar
  25. 25.
    Nassif, D. V., 1980, Mass Transfer Studies in Fluidised Bed Cells, Ph.D. thesis, University of Newcastle upon Tyne, U.K.Google Scholar
  26. 26.
    Coulson and Richardson, vol. 2, p. 233.Google Scholar
  27. 27.
    Stephan, K., and Vogt, H., 1979, “A model for correlating mass transfer data at gas evolving electrodes,” Electrochim. Acta, 24: 11–18.CrossRefGoogle Scholar
  28. 28.
    Lu, R. and Alkire, R. C., 1989, “Mass transfer in parallel plate electrolysers with two phase liquid-liquid flow,” J. Electrochem. Soc., 131: 1059–1067.CrossRefGoogle Scholar
  29. 29.
    Moore, W. J., 1972, Physical Chemistry, Longmans, p. 67.Google Scholar
  30. 30.
    Moore, pp. 233, 300.Google Scholar
  31. 31.
    Moore, p. 237.Google Scholar
  32. 32.
    Moore, p. 440.Google Scholar
  33. 33.
    Harned, H. S., and Owen, B. B., 1950, The Physical Chemistry of Electrolytic Solutions, Reinhold Publishing.Google Scholar
  34. 34.
    MacMullin, R. B., 1963, “The problem of scale-up in electrolytic processes,” Electrochem. Technol., 1: 5–17.Google Scholar
  35. 35.
    Bruggeman, D. A. G., 1935, “Berechnung verschiedener physikalischen Konstanten von heterogenen Substanzen,” Ann. Phys., 24: 636–642, 665–679.Google Scholar
  36. 36.
    Pickett, p. 349.Google Scholar
  37. 37.
    MacMullin, R. B., and Muccini, G. A., 1956, “Characteristics of porous beds and structures,” Am. Inst. Chem. Eng. J., 2: 393–403.CrossRefGoogle Scholar
  38. 38.
    Coulson and Richardson, p. 167.Google Scholar
  39. 39.
    Pletcher, D., 1984, Industrial Electrochemistry, Chapman and Hall, p. 115.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • F. Goodridge
    • 1
  • K. Scott
    • 1
  1. 1.University of Newcastle upon TyneNewcastle upon TyneEngland

Personalised recommendations