Membrane Transport of Platinum Compounds

  • Gerrit Los
  • Dennis Gately
  • Michael L. Costello
  • Franz Thiebaut
  • Peter Naredi
  • Stephen B. Howell


Small molecules cross membranes by either passive diffusion or are transported actively by transmembrane proteins. If given enough time, however, essentially any molecule will diffuse across a lipid bilayer down its concentration gradient. The rate at which this happens depends on size of the molecule and its hydrophobicity (solubility in oil). Based on these observations most platinum compounds which are small uncharged molecules, are expected to cross membranes relatively easily by passive diffusion. This is, however, only partly true. On the one hand platinum compounds, and specificly cisplatin (cDDP), cross membranes by passive diffusion since the accumulation is not saturable nor is it inhibited by structural analogs. On the other hand, cisplatin transport can be modulated both by a variety of pharmacologic agents that do not cause general permeabilization of the membrane, and by the activation of intracellular signal transduction pathways. Whatever is responsible for the transport modulation, probably more than one mechanism is involved in the transport of platinum compounds across cell membranes. The importance of each of these transport mechanisms is still unclear, however transport of platinum compounds is often down modulated during the emergence of platinum drug resistance. Therefore most of the studies dealing with transport of platinum compounds are performed in platinum drug-resistant variants. In this chapter we will describe the current understanding of membrane transport of platinum compounds in both sensitive and resistant cells and the importance of specific transport molecules in the sequestration of platinum compounds and platinum complexes.


Electron Energy Loss Spectroscopy Platinum Compound Cross Resistance Human Ovarian Carcinoma Cell Major Vault Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gale, G., R. Morris, C. R., Atkins, L. M., Smith, A. B. Binding of an antitumor platinum compound to cells as influenced by physical factors and pharmacologically active agents. Cancer Res. 33: 813–817 (1973).PubMedGoogle Scholar
  2. 2.
    Andrews, P.A., Howell, S.B. Cellular pharmacology of cisplatin: perspectives on mechanisms of acquired resistance. Cancer Cells 2: 35–42 (1990).PubMedGoogle Scholar
  3. 3.
    Byfield, J.E., Calabro-Jones, P.M. Further evidence for carrier mediated uptake of cis-dichlorodiammine platinum. Proc. Am. Assoc. Cancer Res. 23: 167 (1982).Google Scholar
  4. 4.
    Andrews, P.A., Velury, S., Mann, S. C., Howell, S.B. Cis-diamminodichloroplatinum-(II) accumulation in sensitive and resistant human ovarian cells. Cancer Res. 48: 68–73 (1988).PubMedGoogle Scholar
  5. 5.
    Atema, A., Buurman, K.J.H., Noteboom, E., Smets, L.A. Potentiation of DNA-adduct formation and cytotoxicity of platinum-containing drugs by low pH. Int. J. Cancer 54: 1–7, 1993.CrossRefGoogle Scholar
  6. 6.
    Dornish, J.M., Peterson, E.O. Modulation of cisdichlorodiammineplatinum by benzaldehyde derivatives. Cancer Lett. 46: 63–68 (1989).CrossRefPubMedGoogle Scholar
  7. 7.
    Basu, A., Lazo, J.S. Sensitization of human cervical carcinoma cells to cis-diamminedi-chloroplatinum(II) by bryostatin. Cancer Res. 52: 3119–3124 (1992).PubMedGoogle Scholar
  8. 8.
    Christen, R.D., Horn, D.K., Porter, D.C., Andrews, P.A., MacLeod, C.L., Halfstrom, L., Howell, S.B. Epidermal growth factor regulates the in vitro sensitivity of human ovarian carcinoma cells to cisplatin. J. Clin. Invest. 86: 1632–1640 (1990).CrossRefPubMedGoogle Scholar
  9. 9.
    Kikuchi, Y., Iwano, I., Miyauchi, M., Sasa, H., Nagata, I., Kuki, E. Restorative effects of calmodulin antagonists on reduced cisplatin uptake by cisplatin-resistant human ovarian carcinoma cells. Gynecol Oncol. 39: 199–203 (1990).CrossRefPubMedGoogle Scholar
  10. 10.
    Gately, D.P. and Howell, S.B. Cellular accumulation of the anticancer agent cisplatin: A review. Br. J. Cancer. 67: 1171–1176 (1993).CrossRefPubMedGoogle Scholar
  11. 11.
    Los, G., Vugt van, M., Vlist van der M., den Engelse, L., Pinedo, H.M. The effect of heat on the interaction of cisplatin and carboplatin with cellular DNA. Biochem. Pharmacol. 46: 1229–1237 (1993).CrossRefPubMedGoogle Scholar
  12. 12.
    Dornish, J. M., Melvik, J. E., Pettersen, E. O. Reduced cellular uptake of cis-diamminedichloroplatinum(II) by benzaldehyde. Anticancer Res. 6: 583–588 (1986).PubMedGoogle Scholar
  13. 13.
    Dornish, J. M., Pettersen, E. O., Oftebro, R. Modifying effect of cinnamaldehyde and cinnamaldehydes derivates on cell inactivation and cellular uptake of cis-diamminedichloroplatinum(II) in human NHIK 3025 cells. Cancer Res. 49: 3917–3921 (1989).PubMedGoogle Scholar
  14. 14.
    Kraker, A.J. & Moore, C.W. Accumulation of cis-diamminedichloroplatinum(II) and platinum analogs by platinum resistant murine leukemia cells in vitro. Cancer Res. 48: 9–13 (1988).PubMedGoogle Scholar
  15. 15.
    Kelland, L.R., Mistry, P., Abel, G., Loh, S.Y., O’Neill, C.F., Murrer, B.A., Harrap, K.R. Mechanism-related circumvention of acquired cis-diamminedichloroplatinum(II) resistance using two pairs of human ovarian carcinoma cell lines by ammine/amine platinum(IV) dicarboxylates. Cancer Res. 53: 3857–3864 (1992).Google Scholar
  16. 16.
    Los, G., Mutsaers, P.H.A., Ruevekamp, M., McVie, J.G. The use of oxaliplatin versus cisplatin in intraperitoneal chemotherapy in cancers restricted to the peritoneal cavity. Cancer Letters 51: 109–117 (1990).CrossRefPubMedGoogle Scholar
  17. 17.
    Sharp, S. Y., Mistry, P., Valenti, M.R., Bryant, A. P., Kelland, L.R. Selective potentiation of platinum drug cytotoxicity in cisplatin-sensitive and-resistant ovarian carcinoma cell lines by amphotericin B. Cancer Chemother. Pharmacol. 35: 137–143 (1994).CrossRefPubMedGoogle Scholar
  18. 18.
    Ortiz, D.F., Kreppel, L., Speiser, D.M. Scheel, G., McDonald, G., Ow, D.W. Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J. 11: 3491–3499 (1992).PubMedGoogle Scholar
  19. 19.
    Nies, D.H. CzcR and CzcD, gene products affecting regulation of resistance to cobalt, zinc and cadmium (crc system) in Alcaligenes eutrophus. J. Bacteriol. 174: 8102–8110 (1992).PubMedGoogle Scholar
  20. 20.
    Conklin, D.S., McMaster, J.A., Culberston, M.R., Kung, C. COT1, a gene involved in cobalt accumulation in Saccharomyces. Mol. Cell. Biol. 12: 3678–3688 (1992).PubMedGoogle Scholar
  21. 21.
    Kamizono, A., Nishizawa, M., Teranishi, Y., Murata, K., Kimura, A. Identification of a gene conferring resistance to zinc and cadmium ions in the yeast Saccharomyces cerevesiae. Mol. Cell Genet. 219: 161–167 (1989).Google Scholar
  22. 22.
    Welch, J., Fogel, S., Buchman, C., Karin, M. The CUP2 gene product regulates the expression of CUP1 gene, coding for yeast metallothionein. EMBO J. 8: 255–260 (1989).PubMedGoogle Scholar
  23. 23.
    Richon, V.M., Schulte, N., Eastman, A. Multiple mechanisms of resistance to cis-diamminedichloroplatinum(II) in murine leukemia L1210 cells. Cancer Res. 47: 2056–2061 (1987).PubMedGoogle Scholar
  24. 24.
    Stearns, R. C., Katler, M., Godleski, J. J. Contribution of osmium tetroxide to the image quality and detectability of iron in cells studied by electron spectroscopic imaging and electron energy loss spectroscopy. Micros. Res. Tech. 28: 155–163 (1994).CrossRefGoogle Scholar
  25. 25.
    Xie, X., Yokel, R. A., Markesbery, W. R. Application of electron energy loss spectroscopy and electron spectroscopic imaging to aluminum determination in biological tissue. Biol. Trace Element Res. 40: 39–48 (1994).CrossRefGoogle Scholar
  26. 26.
    Andrews, P.A., Murphy, M.P., Howell, S.B. Metallothionein-mediated cisplatin resistance in human ovarian carcinoma cells. Cancer Chemother. Pharmacol. 19: 149–154 (1987).CrossRefPubMedGoogle Scholar
  27. 27.
    Naredi, P., Heath, D. D., Enns, R. E., Howell, S.B. Cross-resistance between cisplatin and antimony in human ovarian carcinoma cell line. Cancer Res. 54: 6464–6468 (1994).PubMedGoogle Scholar
  28. 28.
    Naredi, P., Heath, D. D., Enns, R. E., Howell, S.B. Cross-resistance between cisplatin, antimonite and arsenite in human tumor cells. J. Clin. Inv. 95: 1193–1198 (1995).CrossRefGoogle Scholar
  29. 29.
    Kaur, P. & Rosen, B.P. Metallo-regulated expression of the ars operon. J. Biol. Chem. 268: 52–58 (1993).Google Scholar
  30. 30.
    Koonin, E.V. A superfamily of ATPase with diverse functions containing either classical or deviant ATP binding motif. J. Mol. Biol. 229: 1165–1174 (1993).CrossRefPubMedGoogle Scholar
  31. 31.
    Callahan, H.L. and S.M. Beverly. Heavy metal resistance: a new role for P-glycoproteins in Leishmania. J. Biol. Chem. 266: 18427–18430 (1992).Google Scholar
  32. 32.
    Papadppoulou, B., Dey, S., Roy, G., Grondi, K., Dou, D., Rosen, B.P. and Ouellette, M. Oxyanion resistance and P-glucoprotein gene amplification in Leishmania. Gen Motors Cancer Res. Found. Meeting, Toronto, Abstract (1993).Google Scholar
  33. 33.
    Neal, R. A., van Buren, J., McCoy, N.G. and Iwobi, M. Reversal of drug resistance in Trypansoma cruzi and Leishmania donovani by verapamil. Transactions of the royal Society of Tropical Medicine and Hygiene 83: 197–198 (1989).CrossRefPubMedGoogle Scholar
  34. 34.
    Rosen, B.P., Dey, S., Dou, D., Ji, G., Kaur, P., Ksenzenko, M, Yu., Silver, S., Wu, J. Evolution of an ion translocating ATPase. Annual. N Y Acad. Sci. 671: 257–272 (1992).CrossRefGoogle Scholar
  35. 35.
    Ishikawa, T. & Ali-Osman, F. Glutathione-associated cis-diamminedichloroplatinum(II) metabolism and ATP-dependant efflux from leukemia cells. J. Biol. Chem. 268: 20116–20125 (1993).PubMedGoogle Scholar
  36. 36.
    Ishikawa, T., Wright, CD., Ishizuka, H. GS-X pump is functionally overexpressed in cis-diamminedichloroplatinum(II)-resistant human leukemia HL-60 cells and down regulated by cell differentiation. J. Biol. Chem. 46: 29085–29093 (1994).Google Scholar
  37. 37.
    Ishikawa, T. & Wright, C.D. GS-X pump and γ-glutamylcysteine synthetase are co-overexpressed in cisplatin-resistant human leukemia HL-60 cells. Proc. Am. Assoc. Cancer Res. 36, abstract 1863 (1995).Google Scholar
  38. 38.
    Müller, M., Meijer, C., Zaman, G. J. R., Borst, P., Scheper, R. J., Mulder, N. H., de Vries, E. G. E., Jansen, P. L.M. Overexpression of the gene encoding the multidrug resistance-associated protein results in increased ATP-dependent glutathione S-conjugate transport. Proc. Natl. Acad. Sci. USA. 91: 13033–13037 (1994).CrossRefPubMedGoogle Scholar
  39. 39.
    Cole, S.P., Bhardwaj, G., Gerlach, J.H., Mackie, J.E., Grant, C.E., Almquist, K.C., Stewart, A.J., Kurz, E.U., Duncun, A.M.V. and Deeley, R.G. Overexpression of a transporter gene in multidrug resistant human lung cancer cell line. Science 258, 1650–1654 (1992).CrossRefPubMedGoogle Scholar
  40. 40.
    Zaman, G.J.R., Flens, M.J., van Leusden, M.R., de Haas, M., Mulder, H.S., Lankema, J., Pinedo, H.M., Scheper, R. J., Baas, F., Broxterman, H.J. and Borst, P. The human multidrug resistance-associated protein MRP is a plasma drug efflux pump. Proc. Natl. Acad. Sci. USA. 91: 8822–8826 (1994).CrossRefPubMedGoogle Scholar
  41. 41.
    Flens, M.J., Izquierdo, M.A., Scheffer, G.L., Fritz, J.M., Meijer, C. J. L. M., Scheper, R. J. and Zaman, G. J. R. Immunochemical detection of multidrug resistance-associated protein MRP in human multidrug resistance tumor cells by monoclonal antibodies. Cancer Res. 54: 4557–4563 (1994).PubMedGoogle Scholar
  42. 42.
    Scheper, R. J., Broxterman, H. J., Scheffer, G. L., Kaaijk, P., Dalton, W. S., van Heijningen, T. H. M., van Kalken, C K., Slovak, M. L., de Vries, E. G. E., van der Valk, P., Meijer, C. J. L. M., Pinedo, H. M. Overexpression of M r 110,000 Vesicular Protein in non P-glycoprotein-mediated multidrug resistance. Cancer Res. 53: 1475–1479 (1993).PubMedGoogle Scholar
  43. 43.
    Scheffer, G. L., Wijngaard, P. L. J., Flens, M. J., Izquierdo, M, A., Slovak, M. L., Pinedo, H. M., Meijer, C. J. L. M., Clevers, H. C., Scheper, R. J. The drug resistance related protein LRP is a major vault protein. Proc. Am. Assoc. Cancer Res. 36, Abstract 1921 (1995).Google Scholar
  44. 44.
    Izquierdo, M. A., Schoemaker, R. H., Flens, M. J., Scheffer, G. L., Wu, L., Prater, T. L., Scheper, R. J. Overlapping phenotype of multidrug resistance among disease-oriented panels of human cancer cell lines. Proc. Am. Assoc. Cancer Res. 36, Abstract 1923 (1995).Google Scholar
  45. 45.
    Scheper, R. J., Scheffer, G. L., Flens, M., Izquierdo, M. A., van der Valk, P., Broxterman, h. J., Pinedo, H. M., Meijer, C. J. L. M., Clevers, H. C Molecular and clinical characterization of the LRP protein associated with non-P-glycoprotein multidrug resistance. Proc. Am. Assoc. Cancer Res. 35, Abstract 2050 (1994).Google Scholar
  46. 46.
    Shinooya, S., Lu, Y., Scanlon, K. J. Properties of amino acid transport systems in K652 cells sensitive resistant to cis-diamminedichloroplatinum(II). Cancer Res. 46: 3445–3448 (1986).Google Scholar
  47. 47.
    Waud, W.R. Differential uptake of cis-diamminedichloroplatinun(II) by sensitive and resistant murine L1210 leukemia cells. Cancer Res. 47: 6549–6555 (1987).PubMedGoogle Scholar
  48. 48.
    Los, G., Muggia F.M. Platinum resistance; Experimental and clinical status. Hematology/Oncology Clinics of North America, 8: 411–429 (1994).PubMedGoogle Scholar
  49. 49.
    Oldenburg, J., Begg, A. C., van Vugt, M. J. H., Ruevekamp, M., Schornagel, J. H., Pinedo, H. M., Los, G. Characterization of resistance mechanisms to cis-diammine-dichloroplatinum(II) in three sublines of the CC531 colon carcinoma cell line in vitro. Cancer Res. 54: 487–493 (1994).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Gerrit Los
    • 1
  • Dennis Gately
    • 1
  • Michael L. Costello
    • 1
  • Franz Thiebaut
    • 1
  • Peter Naredi
    • 1
  • Stephen B. Howell
    • 1
  1. 1.UCSD Cancer CenterUniversity of California, San DiegoLa JollaUSA

Personalised recommendations