Skip to main content

Hypersensitivity to Cisplatin in Mouse Leukemia L1210/0 Cells: An XPG DNA Repair Defect

  • Chapter
Platinum and Other Metal Coordination Compounds in Cancer Chemotherapy 2

Abstract

A major limitation to the clinical efficacy of cisplatin is the intrinsic or acquired resistance of many neoplasms to the drug. As a result, many studies to investigate the mechanisms of cisplatin resistance have been carried out with human and rodent cells in culture. Acquired resistance has been ascribed in different cases to changes in drug accumulation, intracellular drug inactivation by enhanced levels of glutathione or metallothionein, and enhanced DNA repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Aboussekhra and R.D. Wood, Repair of ultraviolet light-damaged DNA by mammalian cells and Saccharomyces cerevisiae. Curr. Opin. Genet. Devel., 4:212 (1994).

    Article  CAS  Google Scholar 

  2. J. Hansson, S.M. Keyse, T. Lindahl and R.D. Wood, DNA excision repair in cell extracts from human cell lines exhibiting hypersensitivity to DNA damaging agents. Cancer Res., 51:3384 (1991).

    CAS  PubMed  Google Scholar 

  3. D.E. Szymkowski, K. Yarema, J.E. Essigmann, S.J. Lippard and R.D. Wood, An intrastrand d(GpG) platinum crosslink in duplex M13 DNA is refractory to repair by human cell extracts. Proc. Natl. Acad. Sci. USA, 89:10772 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. L. Law, T. Dunn, P. Boyle and J. Miller, Observation on the effect of a folic-acid antagonist on transplantable lymphoid leukemias in mice. J. Natl. Cancer Inst., 10:179 (1949).

    CAS  PubMed  Google Scholar 

  5. G. Moore, A. Sandberg and K. Ulrich, Suspension cell culture and in vivo and in vitro chromosome constitution of mouse leukemia L1210. J. Natl. Cancer. Inst., 36:405 (1966).

    CAS  PubMed  Google Scholar 

  6. J.H. Burchenal, K. Kalaher, T. O’Toole and J. Chisholm, Lack of cross-resistance between certain platinum coordination compounds in mouse leukemia. Cancer Res., 37:3455 (1977).

    CAS  PubMed  Google Scholar 

  7. J. Burchenal, K. Kalaher, L. Lokys and G. Gale, Studies of cross-resistance, synergistic combinations and blocking of activity of platinum derivatives. Biochimie, 60:961 (1978).

    Article  CAS  Google Scholar 

  8. V. Richon, N. Schulte and A. Eastman, Multiple mechanisms of resistance to cis-diamminedichloroplatinum(II) in murine leukemia L1210 cells. Cancer Res., 47:2056 (1987).

    CAS  PubMed  Google Scholar 

  9. N. Sheibani, M.M. Jennerwein and A. Eastman, DNA repair in cells sensitive and resistant to cis-diamminedichloroplatinum(II): host cell reactivation of damaged plasmid DNA. Biochemistry, 28:3120 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. A. Eastman and N. Schulte, Enhanced DNA repair as a mechanism of resistance to cis-diamminedichloroplatinum(II). Biochemistry, 27:4730 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. J.A. Vilpo, L.M. Vilpo, D.E. Szymkowski, A. O’Donovan and R.D. Wood, An XPG DNA repair defect causing mutagen hypersensitivity in mouse leukemia L1210 cells. Mol. Cell Biol., 15:290 (1995).

    CAS  PubMed  Google Scholar 

  12. G. Weeda and J.H.J. Hoeijmakers, Genetic analysis of nucleotide excision repair in mammalian cells. Semin. Cancer Biol., 4:105 (1993).

    CAS  PubMed  Google Scholar 

  13. J. Hansson, M. Munn, W.D. Rupp, R. Kahn and R.D. Wood, Localization of DNA repair synthesis by human cell extracts to a short region at the site of a lesion. J. BioL Chem., 264:21788 (1989).

    CAS  PubMed  Google Scholar 

  14. A. O’ Donovan and R.D. Wood, Identical defects in DNA repair in xeroderma pigmentosum group G and rodent ERCC group 5. Nature, 363:185 (1993).

    Article  CAS  Google Scholar 

  15. R.D. Wood, P. Robins and T. Lindahl, Complementation of the xeroderma pigmentosum DNA repair defect in cell-free extracts. Cell, 53:97 (1988).

    Article  CAS  PubMed  Google Scholar 

  16. M. Biggerstaff, D.E. Szymkowski and R.D. Wood, Co-correction of the ERCC1, ERCC4 and xeroderma pigmentosum group F DNA repair defects in vitro. EMBO J, 12:3685 (1993).

    CAS  PubMed  Google Scholar 

  17. D. Scherly, T. Nouspikel, J. Corlet, C. Ucla, A. Bairoch and S.G. Clarkson, Complementation of the DNA repair defect in xeroderma pigmentosum group G cells by a human cDNA related to yeast RAD2. Nature, 363:182 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. T. Shiomi, Y.-n. Harada, T. Saito, N. Shiomi, Y. Okuno and M. Yamaizumi, An ERCC5 gene with homology to yeast RAD2 is involved in group G xeroderma pigmentosum. Mutat. Res., 314:167 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. M.A. MacInnes, J.A. Dickson, R.R. Hernandez, D. Learmonth, G.Y. Lin, J.S. Mudgett, M.S. Park, S. Schauer, R.J. Reynolds, G.F. Strniste and J.Y. Yu, Human ERCC5 cDNA-cosmid complementation for excision repair and bipartite amino acid domains conserved with RAD proteins of Saccharomyces cerevisiae and Schizosaccharomyces pombe. Mol. Cell BioL, 13:6393 (1993).

    CAS  PubMed  Google Scholar 

  20. A. O’ Donovan, D. Scherly, S.G. Clarkson and R.D. Wood, Isolation of active recombinant XPG protein, a human DNA repair endonuclease. J. Biol. Chem., 269:15965 (1994).

    CAS  Google Scholar 

  21. T. Nouspikel and S.G. Clarkson, Mutations that disable the DNA repair gene XPG in a xeroderma pigmentosum group G patient. Hum. Molec. Genet., 3:963 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. J.E. Cleaver, F. Cortes, L.H. Lutze, W.F. Morgan, A.N. Player and D.L. Mitchell, Unique DNA repair properties of a xeroderma pigmentosum revertant. Mol. Cell. BioL, 7:3353 (1987).

    CAS  PubMed  Google Scholar 

  23. A. O’ Donovan, A.A. Davies, J.G. Moggs, S.C. West and R.D. Wood, XPG endonuclease makes the 3’ incision in human DNA nucleotide excision repair. Nature, 371:432 (1994).

    Article  CAS  Google Scholar 

  24. Y. Habraken, P. Sung, L. Prakash and S. Prakash, Human xeroderma-pigmentosum group-G gene encodes a DNA endonuclease. Nucleic Acids Res, 22:3312 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. J.J. Harrington and M.R. Lieber, Functional domains within FEN-1 and Rad2 define a family of structure-specific endonucleases — implications for nucleotide excision-repair. Genes Dev, 8:1344 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. P. Robins, D.J.C. Pappin, R.D. Wood and T. Lindahl, Structural and functional homology between mammalian DNase IV and the 5′ nuclease domain of Escherichia coli DNA polymerase I. J. Biol. Chem., 269:28535 (1994).

    CAS  PubMed  Google Scholar 

  27. M.M. Jennerwein, A. Eastman and A.R. Khokhar, The role of DNA-repair in resistance of L1210 cells to isomeric 1,2-diaminocyclohexaneplatinum complexes and ultraviolet-irradiation. Mutat. Res., 254:89 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. A.F. Nichols, W.J. Schmidt, S.G. Chaney and A. Sancar, Limitations of the in vitro repair synthesis assay for probing the role of DNA repair in platinum resistance. Chem. Biol. Interact., 81:223 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. P. Calsou, J.-M. Barret, S. Cros and B. Salles, DNA excision-repair synthesis is enhanced in a murine leukemia L1210 cell line resistant to cisplatin. Eur. J. Biochem., 211:403 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. G.R. Gibbons, J.D. Page, S.K. Mauldin, I. Husain and S.G. Chaney, Role of carrier ligand in platinum resistance in L1210 cells. Cancer Research, 50:6497 (1990).

    CAS  PubMed  Google Scholar 

  31. G. Gibbons, W. Kaufman and S. Chaney, Role of DNA replication in carrier-ligand-speciflc resistance to platinum compounds in L1210 cells. Carcinogenesis, 12:2253 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. N. Farrell, Y. Qu, L. Feng and B. Van Houten, Comparison of chemical reactivity, cytotoxicity, interstrand cross-linking and DNA sequence specificity of bis(platinum) complexes containing monodentate or bidentate coordination spheres with their monomeric analogues. Biochemistry, 29:9522 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. N. Farrell, Y. Qu and M.P. Hacker, Cytotoxicity and antitumor activity of bis(platinum) complexes. A novel class of platinum complexes active in cell lines resistant to both cisplatin and 1,2-diaminocyclohexane complexes. J Med Chem, 33:2179 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. N. Farrell, L.R. Kelland, J.D. Roberts and M.V. Beusichem, Activation of the trans geometry in platinum antitumor complexes: a survey of the cytotoxicity of trans complexes containing planar ligands in murine L1210 and human tumor panels and studies on their mechanism of action. Cancer Res., 52:5065 (1992).

    CAS  PubMed  Google Scholar 

  35. L.R. Kelland, P. Mistry, G. Abel, S.Y. Loh, CF. O’ Neill, B.A. Murrer and K.R. Harrap, Mechanism-related circumvention of acquired cis-diarnminedichloroplatinum(II) resistance using 2 pairs of human ovarian-carcinoma cell-lines by ammine amine platinum(IV) dicarboxylates. Cancer. Res., 52:3857 (1992).

    CAS  PubMed  Google Scholar 

  36. P.A. Andrews and S.B. Howell, Cellular pharmacology of cisplatin — perspectives on mechanisms of acquired-resistance. Canc. Cells, 2:35 (1990).

    CAS  Google Scholar 

  37. H. Timmer-Bosscha, N. Mulder and E. de Vries, Modulation of cis-diamminedichloroplatinum(II) resistance: a review. Brit J Cancer, 66:227 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. G. Chu, Cellular-responses to cisplatin — the roles of DNA-binding proteins and DNA-repair. J Biol Chem, 269:787 (1994).

    CAS  PubMed  Google Scholar 

  39. D. Coverley, M.K. Kenny, D.P. Lane and R.D. Wood, A role for the human single-stranded DNA binding protein HSSB/RPA in an early stage of nucleotide excision repair. Nucleic Acids Res., 20:3873 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wood, R.D., Vilpo, J.A., Vilpo, L.M., Szymkowski, D.E., O’Donovan, A., Moggs, J.G. (1996). Hypersensitivity to Cisplatin in Mouse Leukemia L1210/0 Cells: An XPG DNA Repair Defect. In: Pinedo, H.M., Schornagel, J.H. (eds) Platinum and Other Metal Coordination Compounds in Cancer Chemotherapy 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0218-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0218-4_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0220-7

  • Online ISBN: 978-1-4899-0218-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics