Skip to main content

Abstract

The majority of anticancer agents in current clinical practice arrest cell cycle progression at one or more definable points (Table 1). The DNA damaging agents including, bleomycin, adriamycin, etoposide, nitrogen mustards and cisplatin, arrest cell cycle progression in G1 and/or G2 phases. These agents can also prolong S phase progression. The antimetabolites including, methotrexate, 5-fluorouracil and 6-mercaptopurine, arrest cell cycle progression at the G1/S phase border and in S phase. The microtubule inhibitors including, vincristine, vinblastine and taxol, arrest cells primarily in mitosis and more specifically in a pseudometaphase state. Arrest at these stages in the cell cycle is dependent on the integrity of a series of negative feedback control systems that have become commonly termed checkpoints (1, 2). These checkpoints could protect cells from cytotoxicity by extending the time for drug-induced perturbations to be corrected before cell division. This possibility is supported by findings from yeast genetics, which have shown that inactivating mutations in checkpoint control genes sensitized cells to DNA damaging agents, antimetabolites or antimitotic agents (1, 2). Furthermore, the findings by Pardee and colleagues, that chemical agents like pentoxifylline, can abrogate G2 checkpoint control and synergise with DNA damaging agents (3), also supports the protective role of cell cycle checkpoints. Based on such observations, we have suggested that the integrity of checkpoint control systems in cancer cells may in large part determine chemosensitivity (1). Our thinking here is that uncontrolled progression through one or more of these checkpoints in the presence of damage will predispose cells to killing. We discuss below recent observations we and other workers have made in investigating the role of the G1 and G2 cell cycle checkpoints in chemosensitivity. We focus on attempts to determine whether the G1 and G2 cell cycle checkpoints are commonly defective in cancer cells, whether such checkpoint alterations affect chemosensitivity and whether checkpoint alterations in cancer cells could provide new opportunities for drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. M. O’Connor and K. W. Kohn. A fundamental role for cell cycle regulation in the chemosensitivity of cancer cells? Semin. Cancer Biol., 3:409 (1992).

    Google Scholar 

  2. L. H., Hartwell and M. B. Kastan. Cell cycle control and cancer. Science, 266:1821 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. H. J. Fingert, A. T. Pu, Z. Chen, P. B. Googe, M. C. Alley and A. B. Pardee. In vivo and in vitro enhanced antitumor effects by pentoxifylline in human cancer cells treated with thiotepa. Cancer Res., 48:4375 (1988).

    CAS  PubMed  Google Scholar 

  4. M. Hollstein, D. Sidransky, B. Vogelstein and C. C. Harris. p53 mutations in human cancers. Science, 253:49 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. L. A. Donehower, M. Harvey, B. L. Slagle, M. J. McArthur, C. A. Montgomery, Jr., J. S. Butel and A. Bradley. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumors. Nature, 356:215 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. P. M. O’Connor, J. Jackman, D. Jondle, K. Bhatia, I. Magrath and K. W. Kohn. Role of the p53 tumor suppressor gene in cell cycle arrest and radiosensitivity of Burkitt’s lymphoma cell lines. Cancer Res., 53:4776 (1993).

    PubMed  Google Scholar 

  7. D. Malkin, F. P. Li, L. C. Strong, J. F. Fraumeni, Jr., C. E. Nelson, D. H. Kim, J. Kassel, M. A. Gryka, F. Z. Bischoff, M. A. Tainsky and S. H. Friend. Germ line p53 mutations in a familial syndrome of breast cancer, sarcoma’s and other neoplasms. Science, 250:1233 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. S. Fan, W. S. El-Deiry, I. Bae, J. Freeman, D. Jondle, K. Bhatia, A. J. Fornace, Jr., I. Magrath, K. W. Kohn and P. M. O’Connor. p53 gene mutations are associated with decreased sensitivity of human lymphoma cells to DNA damaging agents. Cancer Res., 54:5824 (1994).

    CAS  PubMed  Google Scholar 

  9. W. G. Nelson and M. B. Kastan. DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol. Cell. Biol., 14:1815 (1994).

    CAS  PubMed  Google Scholar 

  10. M. B. Kastan, Q. Zhan, W. S. El-Deiry, F. Carrier, T. Jacks, W. V. Walsh, B. Plunkett, B. Vogelstein and A. J. Fornace, Jr. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia telangiectasia. Cell, 75:817 (1993).

    Article  Google Scholar 

  11. K. Savitsky, A. Bar-Shira, S. Gilad, G. Rotman, Y. Ziv, L. Vanagaite, D.A. Tagle, S. Smith, T. Uziel, S. Sfez, M. Ashkenazi, I. Pecker, M. Frydman, R. Harnik, S.R. Patanjali, A. Simmons, G.A. Clines, A. Sartiel, R.A. Gatti, L. Chessa, O. Sanal, M.F. Lavin, N.G.J. Jaspers, A.M.R. Taylor, C.F. Arlett, T. Miki, S.M. Weissman, M. Lovett, F.S. Collins, Y. Shiloh. A single Ataxia Telangiectasia gene with a product similar to PI-3 kinase. Science, 268:1169 (1995).

    Article  Google Scholar 

  12. T. D. Kessis, R. J. Slebos, W. G. Nelson, M. B. Kastan, B. S. Plunkett, S. M. Han, A. T. Lorincz, L. Hedrick and K. R. Cho. human papillomavirus 16 E6 expression disrupts the p53 mediated cellular response to DNA damage. Proc. Natl. Acad. Sci. (USA), 90:3988 (1993).

    Article  CAS  Google Scholar 

  13. X. Wu, J. H. Bayle, D. Olson and A. J. Levine. the p53-mdm-2 autoregulatory feedback loop. Genes and Dev., 7:1126 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. G. P. Zambetti and A. J. Levine. A comparison of the biological activities of wild-type and mutant p53. FASEB J., 7:855 (1993).

    CAS  PubMed  Google Scholar 

  15. M. L. Smith, I. Chen, Q. Zhan, I. Bae, T. Gilmer, M. B. Kastan, P. M. O’Connor and A. J. Fornace, Jr. Interaction of the p53 regulated protein Gadd45 with proliferating cell nuclear antigen. Science, 266:1376 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. W. S. El-Deiry, T. Tokino, V. E. Veculescu, D. B. Levy, R. Parson, J. M. Trent, D. Lin, W. E. Mercer, K. W. Kinzler and B. Vogelstein. WAF1, a potential mediator of p53 tumor suppression. Cell, 75:817 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. J. W. Harper, G. R. Adami, N. Wei, K. Keyomarsi and S. J. Elledge. The p21 Cdk-interacting protein Cipl is a potent inhibitor of Gl cyclin dependent kinases. Cell, 75:805 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. I. Bae, S. Fan, K. Bhatia, K.W. Kohn, A.J. Fornace, Jr., and P.M. O’Connor. Relationships between Gl Arrest and Stability of the p53 and p21Cipl/wafl Proteins following γ-Irradiation of Human Lymphoma Cells. Cancer Res., 55:2387 (1995).

    CAS  PubMed  Google Scholar 

  19. Q. Zhan, S. Fan, I. Bae, C. Guillouf, D. A. Liebermann, P. M. O’Connor and A. J. Fornace, Jr. Induction of bax by genotoxic stress in human cells correlates with normal p53 status and apoptosis. Oncogene, 9:3743 (1994).

    CAS  PubMed  Google Scholar 

  20. M. Selvakumaran, H-K. Lin, T. Miyashita, H. G. Wang, S. Krajewski, J. C. Reed, B. Hoffman and D. Liebermann. Immediate early up-regulation of bax expression by p53 but not TGF beta l:a paradigm for distinct apoptotic pathways. Oncogene, 9:1791 (1994).

    CAS  PubMed  Google Scholar 

  21. S. Fan, M. L. Smith, D. J. Rivet, D. Duba, Q. Zhan, K. W. Kohn, A. J. Fornace, Jr. and P. M. O’Connor. Disruption of p53 function sensitizes breast cancer MCF-7 cells to cisplatin and pentoxifylline. Cancer Res., 55:1649 (1995).

    CAS  PubMed  Google Scholar 

  22. P. M. O’Connor, D. K. Ferris, G. A. White, J. Pines, T. Hunter, D. L. Longo and K. W. Kohn. Relationships between the cdc2 kinase, DNA crosslinking and cell cycle perturbations induced by nitrogen mustard. Cell Growth & Differen. 3:43 (1992).

    Google Scholar 

  23. P. M. O’Connor, D. K. Ferris, M. Pagano, G. Draetta, J. Pines, T. Hunter, D. L. Longo and K. W. Kohn. G2 delay induced by nitrogen mustard in human cells affects cyclin A/Cdk2 and cyclin B1/cdc2 kinases differently. J. Biol. Chem. 268:8298 (1993).

    PubMed  Google Scholar 

  24. P. M. O’Connor, D. K. Ferris, I. Hoffmann, J. Jackman, G. Draetta and K. W. Kohn. Role of the cdc25C phosphatase in G2 arrest induced by nitrogen mustard. Proc. Natl. Acad. Sci. (USA), 91:9480 (1994).

    Article  Google Scholar 

  25. F. Zampetti-Bosseler and D. Scott. Cell death, chromosome damage and mitotic delay in normal human, ataxia telangiectasia and retinoblastoma fibroblasts after x-irradiation. Int J. Radiat Biol. Relat. Stud. Phys. Chem. Med. 39:547 (1981).

    Article  CAS  PubMed  Google Scholar 

  26. K. J. Russell, L. W. Weins, D. A. Galloway and M. Groudine. Abrogation of the G2 checkpoint results in differential radiosensitization of Gl checkpoint deficient and competent cells. Cancer Res., 55:1639 (1995).

    CAS  PubMed  Google Scholar 

  27. S. N. Powell, J. S. DeFrank, P. Connell, M. Preffer, D. Dombkowski, W. Tang and S. Friend. Differential sensitivity of p53+ and p53-cells to caffeine-induced radiosensitization and override of G2 delay. Cancer Res., 55:1643 (1995).

    CAS  PubMed  Google Scholar 

  28. W. J. Slichenmyer, W. G. Nelson, R. J. Slebos and M. B. Kastan. Loss of a p53 associated G1 checkpoint does not decrease cell survival following DNA damage. Cancer Res., 53:4164 (1993).

    CAS  PubMed  Google Scholar 

  29. D. G. Brachman, M. Beckett, D. Graves, D. Haraf, E. Vokes and R. Weichselbaum. p53 mutation does not correlate with radiosensitivity in head and neck cancer cell lines. Cancer Res., 53:3666 (1993).

    Google Scholar 

  30. R. Brown, C. Clugston, P. Burns, A. Edlin, P. Vasey, B. Vojtesek and S. Kaye. Increased accumulation of p53 protein in cisplatin-resistant ovarian cell lines. Int. J. Cancer, 55:678 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. M. L. Smith, I. T. Chen, Q. Zhan, P. M. O’Connor and A. J. Fornace, Jr. Involvement of the p53 tumor suppressor in repair of UV-type DNA damage. Oncogene, 10:1053(1995).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

O’Connor, P.M., Fan, S. (1996). Cell Cycle Checkpoints and Cancer Chemotherapy. In: Pinedo, H.M., Schornagel, J.H. (eds) Platinum and Other Metal Coordination Compounds in Cancer Chemotherapy 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0218-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0218-4_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0220-7

  • Online ISBN: 978-1-4899-0218-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics